跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏柏充
研究生(外文):Po-Chung Yen
論文名稱:熱處理改良對單方向凝固鎳基高熵超合金之研究
論文名稱(外文):Study on the Heat Treatment Improvement of Directionally Solidified High Entropy Ni-based Superalloy
指導教授:簡賸瑞
指導教授(外文):Sheng-Rui Jian
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:鎳基超合金高熵合金單方向凝固熱處理
外文關鍵詞:Directional solidificationheat treatmentsuperalloyhigh entropy alloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以鎳(Ni)作為基底,添加約十種不同元素並經由軟體計算後依照不
同比例添加,設計出三種不同比例的鎳基高熵超合金:HESA-A 只添加了
2wt.%的鉭而沒有鈮;而HESA-C 只添加了2wt.%的鈮而沒有鉭;HESA-B 則是鉭跟鈮各添加了1wt.%。透過不同熱處理溫度以及元素添加的變化,來探討其微觀組織及機械性質上的影響。研究發現,經過固溶熱處理1210℃後,強化相γ''已幾乎被溶回γ 基地中;而從不同溫度之時效熱處理的變化顯示,在900C 單時效及900C/750C 雙時效硬度值都超過了400HV,其中以900C/750C 雙時效的硬度值為最高,且其γ''體積分率亦為最高。而從合金設計元素添加的變化中發現,HESA-A 碳化物中的鉭含量高達48.81wt.%,HESA-B 碳化物中的鉭含量是27.82wt.%、鈮含量有20.81wt.%,HESA-C 碳化物中的鈮含量高達47.78 wt.%。從元素分佈分析探討γ´及γ 之間元素的含量變化得知,HESA-A因為添加了2wt.%的鉭,所以偏向γ´相的含量比HESA-B還要來的高,而HESA-C 因為添加了2wt.%的鈮,所以偏向γ´相的含量亦比HESA-B 還要來的高。另外,HESA-C 的鎢元素偏向在γ 基地相因為添加了鈮2wt.%但沒有添加鉭,而HESA-A 及HESA-B 的鎢元素卻仍然留在γ´相。

In this study, nickel (Ni) as a base, by adding about ten elements and through software calculation, three kinds of nickel-based high-entropy superalloys were designed, namely, HESA-A only adds 2wt.% tantalum and no niobium, while HESA-C only adds 2wt.% of niobium and no tantalum, whereas HESA-B is added to each of tantalum and niobium with 1wt.%. Through different heat treatment temperatures and changes in the added element, microstructures are inspected and mechanical properties are investigated. The study found that after 1210C solution heat treatment, strengthening phase γ'' has almost dissolved back to γbase phase, in addition hardness values exceed 400HV for both aging heat treatments at 900C single aging and 900C/750C double aging, where the hardness value of 900C/750C double aging is the highest one, nevertheless the γ'' volume fraction of it is also the highest one. From the differences of added elements due to the alloy design of three nickel-based high-entropy superalloys, tantalum content of HESA-A carbides is 48.81wt.%, tantalum and niobium contents of HESA-B carbides are respectively 27.82wt.% and 20.81wt.%, niobium content of HESA-C carbides is 47.78 wt.%. From the partition analysis of element concentration between γ'' and γ, because of adding 1wt.% more tantalum and no niobium, HESA-A shows higher content of tantalum in γ'' phase than that of HESA-B, and HESA-C also shows higher content of niobium in γ'' phase than that of HESA-B because of adding 1wt.% more niobium but no tantalum. Furthermore, tungsten in HESA-C moves to the γ
base phase because of adding 2wt.% niobium but no tantalum, whereas tungsten remains in the γ'' phase in both cases of HESA-A and HESA-B.

摘要 .......................................................................................................... I
Abstract ............................................................................................................ II
致 謝........................................................................................................III
總目錄 .............................................................................................................V
表目錄 .......................................................................................................... VII
圖目錄 .........................................................................................................VIII
第一章 緒論 ....................................................................................................1
第二章 文獻回顧............................................................................................6
2-1 鎳基超合金.........................................................................................6
2-2 材料介紹.............................................................................................6
2-3 多元高熵合金.....................................................................................7
2-3-1 高熵效應..................................................................................7
2-3-2 嚴重晶格應變效應..................................................................8
2-3-3 遲緩擴散效應..........................................................................8
2-3-4 雞尾酒效應..............................................................................9
2-4 超合金的鑄造製程...........................................................................10
2-5 單方向凝固製程...............................................................................11
2-6 鎳基超合金的析出相與強化機構...................................................11
2-7 熱處理對鎳基超合金的影響...........................................................13
第三章 實驗材料與步驟..............................................................................23
3-1 實驗材料...........................................................................................23
3-2 實驗試片製作...................................................................................23
3-3 固溶、時效熱處理...........................................................................24
3-4 硬度測試...........................................................................................25
3-5 電子微探針(EPMA).........................................................................25
3-6 背向散射電子繞射晶粒方位分析(EBSD)......................................26
3-7 X-ray 繞射儀(XRD) .........................................................................26
3-8 熱性質分析(DSC) ............................................................................26
3-9 光學顯微鏡OM 試片製備與觀察..................................................27
3-10 掃描式電子顯微鏡SEM 試片製備與觀察..................................27
3-11 穿透式電子顯微鏡TEM 試片製作及觀察..................................28
第四章 結果與討論......................................................................................44
4-1 單方向凝固鑄造試棒巨觀觀察.......................................................44
4-2 單方向凝固鑄造試棒微觀組織觀察...............................................44
4-3 鑄造後元素分布之分析...................................................................44
4-4 晶粒成長方位...................................................................................45
4-5 熱處理固溶、時效條件之訂定.......................................................45
4-6 熱處理之顯微結構觀察...................................................................46
4-7 鎳基高低超合金機械性質分析之影響...........................................48
4-8 一次時效熱處理900℃穿透式電子顯微鏡之微觀結構觀察.......49
4-9 鈮元素及鉭元素的改變對鎳基高熵超合金之影響......................50
第五章 結論 ..................................................................................................67
第六章 參考文獻..........................................................................................69

[1] https://tw.answers.yahoo.com/question/index?qid=20070106000016KK0431
9.
[2] https://zh.wikipedia.org/wiki/%E7%A9%BA%E4%B8%AD%E5%AE%A2
%E8%BD%A6A380.
[3] Bo Bai, Hongbo Guo, Hui Peng, Liquan Peng and Shengkai Gong, “Cyclic
oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a
Ni-based single crystal superalloy”, Corrosion Sci., vol. 53, 2011, pp. 2721–
2727.
[4] An-Chou Yeh, Kang-Wei Lu, Chen-Ming Kuo, Hui-Yun Bor and Chao-Nan
Wei, “Effect of serrated grain boundaries on the creep property of Inconel
718 superalloy”, Mater .Sci. Eng. A, vol. 530, 2011, pp. 525–529.
[5] D. K. Das, “Microstructure and high temperature oxidation behavior of Ptmodified
aluminide bond coats on Ni-base superalloys”, Prog. Mat. Sci., vol.
58, 2013, pp. 151-182.
[6] M. Z. Alam, D. V. V. Satyanarayana, D. Chatterjee, R. Sarkar and D.K. Das,
“Effect of prior cyclic oxidation on the creep behavior of directionally
solidified(DS) CM-247LC alloy”, Mater. Sci. Eng. A, vol. 536, 2012, pp.
14– 23.
[7] M. Brunner, M. Bensch, R. Volkl, E. Affeldt and U. Glatzel, “Thickness
influence on creep properties for Ni-based superalloy M247LC SX”, Mater.
Sci. Eng. A, vol. 550, 2012, pp.254– 262.
[8] J. Tiley, G. B. Viswanathan, J. Y. Hwang, A. Shiveley and R. Banerjee,
“Evaluation of gamma prime volume fractions and lattice misfits in a nickel base superalloy using the external standard X-ray diffraction method”, Mater.
Sci. Eng. A, vol. 528, 2010, pp32–36.
[9] 葉均蔚,”高熵合金的發展”, 華岡工程,第27期,2011年,第1-18頁
[10] 葉均蔚、陳瑞凱,”高熵合金”,專題報導熱力學,第377期,2004年,第
16-21頁
[11] Jien-Wei Yeh, “Alloy Design Strategies and Future Trends in High-Entropy
Alloys”, JOM, vol. 65, no. 12, 2013, pp. 1759-1771.
[12] D.Coutsouradis, A Davin and M Lamberigts, “Cobalt-based superalloys for
applications in gas turbines”, Materials Science and Engineering, vol. 88,
1987, pp. 11-19.
[13] K. Shirvani, M. Saremi , A. Nishikata and T. Tsuru, “Electrochemical study
on hot corrosion of Si-modified aluminide coated In-738LC in Na2SO4–
20wt.% NaCl melt at 750 ℃”, Corrosion Science, vol. 45, 2003, pp. 1011–
1021.
[14] D.W. MacLachlan and D.M. Knowles, “Modelling and prediction of the
stress rupture behaviour of single crystal superalloys”, Mater. Sci. Eng. A.
vol. 302, 2001, pp. 275–285.
[15] L. Felberbaum, K. Voisey, M. Gaumann, B. Viguier and A. Mortensen,
“Thermal fatigue of single-crystalline superalloy CMSX-4: a comparison of
epitaxial laser-deposited material with the base single crystal”, Mater. Sci.
Eng. A. vol. 299, 2001, pp. 152–156.
[16] Yi-tong Long, Pu-lin Nie, Zhu-guo Li, Jian Huang, Xiang Li and Xin-mei Xu,
“Segregation of niobium in laser cladding Inconel 718 superalloy”, Trans.
Nonferrous Met. Soc. China, vol. 26, 2016, pp. 431−436.
[17] Blaine Geddes, Hugo Leon and Xiao Huang, Superalloys: Alloying and
Performance, ASM International, 2010.
[18] P. Berthod, L. Aranda, C. Vébert and S. Michon, “Experimental and
thermodynamic study of the high temperature microstructure of tantalum
containing nickel-based alloys”, Computer Coupling of Phase Diagrams and
Thermochemistry, vol. 28, 2004, pp. 159–166.
[19] Si-Jun Park, Seong-Moon Seo , Young-Soo Yoo , Hi-Won Jeong and
Hee-Jin Jang, “Effects of Al and Ta on the high temperature oxidation of
Ni-based Superalloys”, Corrosion Science, vol. 90, 2015, pp. 305–312.
[20] Jinlong Wang, Minghui Chen, Shenglong Zhu and Fuhui Wang, “Ta effect on
oxidation of a nickel-based single-crystal superalloy and its sputtered
nanocrystalline coating at 900–1100◦C”, Applied Surface Science, vol. 345,
2015, pp. 194–203.
[21] R.C. Reed, The Superalloy Fundamentals and Applications, Cambridge
university press, New York, 2006, p19-20.
[22] 王文修,René 77超合金真空單方向凝固鑄造之研究,義守大學機械與自
動化工程學系碩士論文,民國98年,第1-3頁。
[23] D.C. Madeleine, The Microstructure of Superalloys 1st edition, CRC press,
USA, 1997.
[24] W. Kurz and D. J. Fisher, Fundamentals of Solidification, Fourth Revised
Edition, Trans Tech Publications Ltd, Switzerland, 1998.
[25] S. Steinbach and L. Ratke, “The Influence of Fluid Flow on the
“Microstructure of Directionally Solidified AlSi-Base Alloys”, vol.38, 2007,
pp.1388-1394.
[26] M. Mclean, Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983, pp.118-122,
[27] A.P. Gordon, “Crack Initiation Modeling of a Solidified Directionally
Nickel-Base Superalloy”, Georgia Institute of Technology, 2006, p. 10.
[28] C.T. Sims, N.S. Stoloff and W.C. Hangel, Superalloy II, John Wiley &
Sons, Inc., New York, 1987, pp.9-11.
[29] http://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superalloys
[30] L. A. Chapman, “Application of high temperature DSC technique to
nickel based superalloys”, Journal of Material Science, vol. 39, 2004,
pp. 7229-7236.
[31] 何維彬,熱處理對MAR-M247鎳基超合金單方向凝固之高溫機械性
質影響,義守大學材料科學與工程學系碩士論文,民國102年,第
16頁。
[32] Qiuyang Li, Sugui Tian, Huichen Yu , Ning Tian , Yong Su and Ying Li,
“Effects of carbides and its evolution on creep properties of a directionally
solidified nickel-based superalloy”, Mater . Sci. Eng. A. vol. 633, 2015, pp.
20–27.
[33] C. T. Sims, N. S. Stoloff and W. C. Hagel, Superalloys II 1st edition,
John Wiley & Sons, New York, 1981.
[34] J. R. Davis, Heat Resistant Materials 1st edition, ASM Springer
publisher, 1983.
[35] C.T. Sims and W. C. Hagel, The Superlloys, John Wiley & Sons, New
York, USA, 1972, p.98.
[36] T. Murakμumo, T. Kobayashi, Y. Koizumi and H. Harada, “Creep
Behaviour of Ni-Base Single-Crystal Superalloys with Various γ'' Volume Fraction”, Acta Materialia, vol.52, 2004, pp .3737-3744.
[37] G. K. Bouse and M. R. Behrendt, “Mechanical Properties of Microcast-
X Alloy 718 Fine Grain Investment Castings”, Metals and Materials
Society, 1989, pp. 319-328.
[38] G.K. Bouse and M. R. Behrentdt, “Mechanical Properties of
Microcast-X Alloy 718 Fine Grain Investment Castings”, Met. Meter.
Sci., 1989, pp. 319-328.
[39] S. Ma, D. Brown, M.A.M. Bourke, M.R. Daymond and B.S. Majumdar,
“Microstrain evolution during creep of a high volume fraction
superalloy”, Mater. Sci. Eng. A, vol. 399, 2005, pp.141-153.
[40] A.C. Yeh, K.C. Yang, J.W. Yeh and C.M. Kuo, “Developing an
advanced Si-bearing DS Ni-base superalloy”, J. Alloy Comp., vol. 585,
2014, pp. 614-621.
[41] T. H. Courtney, Mechanical Behavior of Materials 2nd edition,
McGraw-Hill., New York, 2000.
[42] X. Li, X.N. Zhang, C. P. Liu, C.Y. Wang, T. Yu and Z. Zhang, “Regular
γ/γ′ phase interface instability in a binary model nickel-based single-crystal
alloy”, J. Alloys Compd., in press, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊