跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳智凱
研究生(外文):Jhih-Kai Wu
論文名稱:磁控濺鍍氧化亞銅薄膜特性之研究
論文名稱(外文):Study of the Properties of the Cuprite Films by Magnetron Sputtering
指導教授:洪博彥
指導教授(外文):Boen Houng
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:160
中文關鍵詞:氧化亞銅磁控濺鍍法
外文關鍵詞:cupritesputter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用RF 磁控濺鍍法製做氧化亞銅薄膜,利用摻雜不同銅含
量(未摻雜、1wt%、3wt%、7wt%)之氧化亞銅靶材進行濺鍍,以氬氣最
為濺鍍氣氛,並通入不同氮氣流量濺鍍於玻璃基板與矽基板,分別進行
顯微結構分析(FE-SEM)、結晶結構分析(XRD)、UV-visible 以及霍爾量測探討氧化亞銅薄膜之性質。
由實驗中得知靶材銅添加量增加,能夠使薄膜電阻率下降。隨著通
入氮氣之流量增加,能夠獲得氧化亞銅薄膜。摻雜1wt%銅之氧化亞銅
靶,通入10sccm 之氮氣,沉積於矽基板能夠獲得最佳之電性,電阻率、
遷移率與載子濃度分別為1.29 x 10-3Ω-cm、1.94 x 103 cm2/Vs 以及1.98 x1017 cm-3。

In this study, we prepared cuprous oxide thin films on the glass substrate and silicon substrates by RF magnetron sputtering method with different copper contents in the copper oxide target (undoped, 1wt%, 3wt%, 7wt%). The effect of nitrogen content on the microstructure and electrical property of cuprous oxide films will also be investigated in this study. The crystal structure was characterized by XRD(PANalytical X''Pert PRO). The surface microstructure is analyzed by FESEM(Hitachi S-4700). The electrical and optical properties are measured by Van-Der Paw method and UV-visible photoelectrometer.
In this study, we found that the addition of Cu in the target can significantly descreased the electrical resistivity of cuprous oxide films. On the other hand, the addition of nitrogen during sputtering can also improve the electrical conductivity of cuprous oxide films as a result of enhancement of cuprous oxide crystallization. The optimum electrical resistivity of cuprous oxide film was obtained of 1.29 x 10-3 Ω-cm with carrier mobility of 1.94 x 103 cm2/Vs and carrier concentration of 1.98 x 1017 cm-3. The optical transmissions of cuprous oxide films are ranged from 51~78% with the optical band gaps of 2.2 ~ 2.6 eV depending on the concentration of Cu and N2 additions.

中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
表目錄 VI
圖目錄 IX
第一章 緒論 1
1-1前言[1][2][3] 1
1-2研究動機與目的[4][5] 3
第二章 實驗原理 4
2-1電漿原理[6][7][8][9] 4
2-2濺鍍原理[10][11][12] 5
2-3射頻磁控濺鍍原理 7
2-4薄膜成核原理 9
2-5氧化亞銅(Cu2O)結構與特性[13][14] 11
第三章 文獻回顧 12
3-1利用熱氧化法製作氧化亞銅薄膜 12
3-2利用電沉積法製作氧化亞銅薄膜 19
3-3利用濺鍍法製作氧化亞銅薄膜 23
3-4參雜氮於氧化亞銅薄膜 43
第四章 實驗步驟 49
4-1基板清洗 50
4-2靶材製備 51
4-3濺鍍系統與實驗參數 53
4-4薄膜性質分析設備 55
4-4-1繞射分析儀(XRD) 55
4-4-2場發射掃描式電子顯微鏡(FE-SEM) 57
4-4-3紫外光/可見光分光光譜儀( UV-visible ) 59
4-4-4霍爾效應量測儀( Hall effect measurement ) 60
第五章 結果與討論 61
5-1摻雜不同銅含量之氧化亞銅 61
5-1-1沉積於玻璃基板 61
5-1-2沉積於矽基板 68
5-2通入不同氮氣流量進行改質 73
5-2-1未摻雜銅之氧化亞銅 73
5-2-2摻雜1wt%銅之氧化亞銅 85
5-2-3摻雜3wt%銅之氧化亞銅 97
5-2-4摻雜7wt%銅之氧化亞銅 109
5-3通入相同氮氣流量之比較 120
5-3-1通入5sccm之氮氣流量 120
5-3-2通入10sccm之氮氣流量 124
5-3-3通入15sccm之氮氣流量 128
5-3-4通入20sccm之氮氣流量 ...132
第六章 結論 136
參考文獻 137

[1].F. Manzano-Agugliaro, A. Alcayde, F. G. Montoya, A. Zapata-Sierra and C. Gil, “Scientific production of renewable energies worldwide : An overview”, Renewable and Sustainable Energy Reviews, vol.18, 2013, pp.134-143.
[2].Vijay Devabhaktuni, Mansoor Alam, Soma Shekara Sreenadh Reddy Depuru, Robert C. Green II, Douglas Nims and Craig Near, “Solar energy : Trends and enabling technologies”, Renewable and Sustainable Energy Reviews, vol.19, 2013, pp.555-564.
[3].Zhi Hua Lee, Sumathi Sethupathi, Keat Teong Lee, Subhash Bhatia and Abdul Rahman Mohamed, “An overview on global warming in South east Asia : CO2 emission status, efforts done, and barriers”, Renewable and Sustainable Energy Reviews, vol.28, 2013, pp.71-81.
[4].P. A. Korzhavyi and B. Johansson, Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation, SKB, 2011.
[5].J.F. Pierson, A. Thobor-Keck and A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering”, Applied Surface Science, vol.210, 2003, pp.359-367.
[6].麻蒔立男,薄膜,瑞昇文化事業股份有限公司,2012年。
[7].白木靖寬、吉田真史,薄膜工程學,全華科技圖書股份有限公司,2004年。
[8].羅吉宗,薄膜科技與應用(第二版),全華圖書股份有限公司,2009年。
[9].柯賢文,表面與薄膜處理技術(第三版),全華圖書股份有限公司,2012年。
[10]. Jaydeep Sarkar, Sputtering Materials for VLSI and Thin Film Devices, 2014.
[11]. H.S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, 2000.
[12]. Andrew H. Simon, Handbook of Thin Film Deposition Third Edition, 2012.
[13]. Nack-Bong Choi, “Metal Oxide Thin Film Transistors on Paper, Substrate: Fabrication, Characterization, and Printing Process”, Lehigh University, 2012.
[14]. J. Gan, V. Venkatachalapathy, B.G. Svensson and E.V. Monakhov, “Influence of target power on properties of CuxO thin films prepared by reactive radio frequency magnetron sputtering”, Thin Solid Films, vol.594, 2015, pp.250-255.
[15]. Hideki Tanaka, Takahiro Shimakawa, Toshihiro Miyata, Hirotoshi Sato and Tadatsugu Minamia, “Electrical and optical properties of TCO-Cu2O heterojunction devices”, Thin Solid Films, vol.469-470, 2004, pp.80-85.
[16]. Yuki Nishi, Toshihiro Miyata, Jun-ichi Nomoto and Tadatsugu Minami, “Influence of Cu2O surface treatment on the photovoltaic properties of Al-doped ZnO/Cu2O solar cells”, Thin Solid Films, vol.520, 2012, pp.3819-3822.
[17]. L. De Los Santos Valladares, D. Hurtado Salinas, A. Bustamante Dominguez, D. Acosta Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J. Albino Aguiar and Y. Majima, “Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates”, Thin Solid Films, vol.520, 2012, pp.6368-6374.
[18]. Tadatsugu Minami, Toshihiro Miyata and Yuki Nishi, “Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure”, Solar Energy, vol.105, 2014, pp.206-217.
[19]. Kunhee Han and Meng Tao, “Electrochemically deposited p-n homojunction cuprous oxide solar cells”, Solar Energy Materials & Solar Cells, vol.93, 2009, pp.153-157.
[20]. Jhin-Wei Chen, Dung-Ching Perng and Jia-FengFang, “Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods”, Solar Energy Materials & Solar Cells, vol.95, 2011, pp.2471-2477.
[21]. Sujuan Chen, Limei Lin, Jinyang Liu, Peiwei Lv, Xiaoping Wu, Weifeng Zheng, Yan Qua and Fachun Lai, “An electrochemical constructed p-Cu2O/n-ZnO heterojunction for solar cell”, Journal of Alloys and Compounds, vol.644, 2015, pp.378-382.
[22]. Woo-Young Yang, Wan-Gee Kim and Shi-Woo Rhee, “Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties”, Thin Solid Films, vol.517, 2008, pp.967-971.
[23]. Hailing Zhu, Junying Zhang, Chunzhi Li, Feng Pan, Tianmin Wang and Baibiao Huang, “Cu2O thin films deposited by reactive direct current magnetron sputtering”, Thin Solid Films, vol.517, 2009, pp.5700-5704.
[24]. S.R. Bhattacharyya, D. Reppin, P. Sanguino, R. Ayouchi, A. Polity, R. Schwarz, D. Hofmann and B. K. Meyer, “Photoconductivity Study of Sputter-Deposited Cu2O Films”, Acta Physica Polonica A, vol.120, 2011, p.6A.
[25]. Peiwei Lv, Weifeng Zheng, Limei Lin, Fuchuan Peng, Zhigao Huang and Fachun Lai, “I-V characteristics of ZnO/Cu2O thin film n-i-p heterojunction”, Physica B, vol.406, 2011, pp.1253-1257.
[26]. K.V. Rajani, S. Daniels, E. McGlynn, R. P Gandhiraman, R. Groarke and P. J McNally, “Low temperature growth technique for nanocrystalline cuprous oxide thin films using microwave plasma oxidation of copper”, Materials Letters, vol.71, 2012, pp.160-163.
[27]. M. Hari Prasad Reddy, A. Sreedhar and S. Uthanna, “Structural, surface morphological and optical properties of nanocrystalline Cu2O films prepared by RF magnetron sputtering : substrate bias effect”, Indian J Phys, vol.86, 2012, pp.291-295.
[28]. Li Guo, Ming Zhao, Da-Ming Zhuang, MingJie Cao, Liangqi Ouyang, Xiaolong Li, Rujun Sun and Zedong Gao, “Influences of CuO phase on electrical and optical performance of Cu2O films prepared by middle frequency magnetron sputtering”, Applied Surface Science, vol.359, 2015, pp.36-40.
[29]. Y. Wang, J. Ghanbaja, F. Soldera, S. Migot, P. Boulet, D. Horwat, F. Mucklich and J.F. Pierson, “Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films”, Applied Surface Science, vol.335, 2015, pp.85-91.
[30]. Chih-Chieh Hsu, Chien-Hsun Wu and Siang-Yu Wang, “Low power deposition of the polycrystalline CuxO film with a high mobility and a low hole concentration by radio-frequency magnetron sputtering of a Cu2O target”, Journal of Alloys and Compounds, vol.663, 2016, pp.262-269.
[31]. H.J. Li, C.Y. Pu, C.Y. Ma, Sh. Li, W.J. Dong, S.Y. Bao and Q.Y. Zhang, “Growth behavior and optical properties of N-doped Cu2O films”, Thin Solid Films, vol.520, 2011, pp.212-216.
[32]. Guozhong Lai, Yangwei Wu, Limei Lin, Yan Qu and Fachun Lai, “Low resistivity of N-doped Cu2O thin films deposited by rf-magnetron sputtering”, Applied Surface Science, vol.285P, 2013, pp.755- 758.
[33]. P. M. Sberna, I. Crupi, F. Moscatelli, V. Privitera, F. Simone and M.Miritello, “Sputtered cuprous oxide thin films and nitrogen doping by ion implantation”, Thin Solid Films, vol.600, 2016, pp.71-75.
[34]. K. Hannabuss, “Quantum Hall Effect”, Encyclopedia of Mathematical Physics, 2006, pp.244-251.
[35]. John W. Jewett and Raymond A. Serway, Physics for Scientists and Engineers Seventh Edition, 2008.
[36]. 段宏昌、劉世崑、鄭乃仁、鄭宜男,普通物理學,學銘圖書有限公司,2009年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top