跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃健安
研究生(外文):Chien-An Huang
論文名稱:單方向凝固超合金高熵化之高溫潛變及氧化特性之研究
論文名稱(外文):Study on the High-Temperature Creep and Oxidation Behavior of Directionally Solidified Superalloy of High Entropy
指導教授:簡賸瑞
指導教授(外文):Sheng-Rui Jian
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:高熵超合金單方向凝固高溫潛變高溫氧化
外文關鍵詞:High-entropy superalloyDirectional solidificationHigh temperature creepHigh temperature oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以高熵超合金為材料基礎,利用合金設計的觀點來開發成本
較低但性能優異的新型態耐熱合金材料。在鎳基超合金加入高熵效應,
使之變成高熵超合金(HESA-6/A/C),其中HESA-A 以鎳(Ni)作為基底,添加八種不同元素其中2wt.%的鉭而沒有鈮;而HESA-C 只添加2wt.%的鈮而沒有鉭。試棒進行單方向凝固鑄造及完整固溶及時效熱處理,並探討其高溫潛變(982C/159MPa)及高溫氧化(1000C 1hr/50hr/100hr)性質的影響與變化。研究結果顯示高熵超合金HESA-C 的γ''相析出最為整齊且體積分率最高,因此高溫潛變性質最好。高溫氧化後發現HESA-C 的晶界無沉淀析出層為最薄,且產生一層連續緻密性的Al2O3 氧化層進而提高了材料的抗氧化性能,故HESA-C 氧化性質最好。

In this study, high-entropy superalloy was selected as a base material for alloy design in order to develop low cost but high performance new type of heat-resistant
alloys. High-entropy superalloys (HESA-6/A/C) were nickel-based superalloys incorporated with high-entropy effect, wherein nickel (Ni) is a base element in HESAA
with eight different elements additions in which 2wt.% tantalum without niobium, on the other hand, 2wt% of niobium were added in HESA-C but no tantalum.
Specimens were prepared through directionally solidified casting processes and full solid solution and aging heat treatments, thereafter high temperature creep tests
(982C/159MPa) were conducted and high temperature oxidation tests (1000C 1hr/50hr/100hr) were investigated. Results show that the γ'' phase of high-entropy superalloy HESA-C is precipitated neatest and with maximum volume fraction, so as to the best high temperature creep behavior. After high temperature oxidation tests, the PFZ of HESA-C is the thinnest and a continuous dense oxide layer of Al2O3 is formed further to improve the oxidation resistance of the material, so that the oxidation behavior of HESA-C is the best among three high-entropy superalloys.

中文摘要 ................................................................................................................... I
英文摘要 ................................................................................................................. II
誌 謝 ...................................................................................................................... III
總目錄 .................................................................................................................... IV
表目錄 .................................................................................................................... VI
圖目錄 .................................................................................................................. VII
第一章 前言 ............................................................................................................ 1
1-1 研究目的................................................................................................... 1
1-2 緒論............................................................................................................ 1
第二章 文獻回顧 .................................................................................................... 5
2-1 超合金簡介............................................................................................... 5
2-2 高熵合金簡介........................................................................................... 7
2-3 高熵超合金之元素添加及影響............................................................... 9
2-4 超合金鑄造程序..................................................................................... 10
2-5 熱處理對超合金的影響......................................................................... 12
2-6 高溫氧化................................................................................................. 14
2-7 潛變理論................................................................................................. 18
第三章 實驗材料與步驟 ...................................................................................... 36
3-1 實驗材料合金設計................................................................................ 36
3-2 真空熔煉鑄造........................................................................................ 36
3-3 熱性質分析(DSC) .................................................................................. 37
3-4 固溶、時效熱處理................................................................................ 37
3-5 為X-ray 繞射儀(XRD) .......................................................................... 38
3-6 高溫潛變試驗及試棒製作..................................................................... 38
3-7 高溫氧化實驗及試片製作..................................................................... 39
3-8 掃描式電子顯微鏡(SEM)試片製備與觀察.......................................... 40
第四章 結果與討論 .............................................................................................. 56
4-1 單方向凝固鑄造試棒巨觀觀察............................................................. 56
4-2 單方向凝固鑄造試棒微觀觀察............................................................. 56
4-3 熱處理之微觀觀察................................................................................. 57
4-4 高熵超合金之高溫潛變性能................................................................. 57
4-5 潛變後rafting 觀察................................................................................. 58
4-6 高熵超合金之高溫恆溫氧化性能......................................................... 59
第五章 結論 .......................................................................................................... 73
參考文獻 ................................................................................................................ 74

[1]. 李屏,性能恢復熱處理對René 142 單方向凝固超合金高溫潛變之研究,義守大學機械與自動化工程學系碩士論文,民國99 年。
[2]. http://www.rolls-royce.com/civil/products/largeaircraft/trent_xwb/.
[3]. Cumpsty, N.A., Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines 1997,Cambridge: Cambridge University Press.
[4]. Rolls-Royce, C.o.
[5]. C. T. Sims, N. S. Stoloff, and W. C. Hangel, Superalloy II, John Wiley & Sons, Inc., New York, 1987, pp.4-8.
[6]. W. Betteridge and S.W.K. Shaw, “Temperature capability of Alloys Versus Year of Introduction”, Materials Science and Technology, vol.31987, pp.682-694.
[7]. Chester T. Sims and William C. Hagel, The Superalloys, John Wiley & Sons, 1972.
[8]. http://scitechvista.most.gov.tw/zh-tw/articles/c/0/12/10/1/435.htm
[9]. 期刊: 葉均蔚,“華岡工程學報第27期”,民國一百年一月,中國文化大學工學院
[10]. JIEN-WEI YEH, “2013 The Minerals, Metals & Materials Society”, JOM, Vol. 65, No. 12, 2013
[11]. 曹德剛,含Nb超導高熵合金研究,國立清華大學碩士論文,民國101年。
[12]. F. J. Wang, Y. Zhang, G. L. Chen, H. A. Davies, “Tensile and Compressive Mechanical Behavior of a CoCrCuFeNiAl0.5 High Entropy Alloy”, International Journal of Modern Physics B 23 (2009)1254.
[13]. Yi-tong LONG, Pu-lin NIE, Zhu-guo LI, Jian HUANG, Xiang LI, Xin-mei XU, “Segregation of niobium in laser cladding Inconel 718 superalloy”, Trans. Nonferrous Met. Soc. China 26(2016)431−436
[14]. Chester T. Sims, Norman S. Stoloff and William C. Hagel, Superalloys II, John Wiley & Sons, 1987.
[15]. D. C. Madeleine, The Microstructure of Superalloys 1st edition, CRC press, USA, 1997.
[16]. W. Kurz and D. J. Fisher, Fundamentals of Solidification 4th edition, Trans Tech Publications Ltd, 1998, pp.87-89.
[17]. R.C. Reed, The Superalloy Fundamentals and Applications, Cambridge university press., New York, 2006, p19-20.
[18]. M. Mclean, Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983, pp.118-122,
[19]. A.P. Gordon, “ Crack Initiation Modeling of a Solidified Directionally Nickel-Base Superalloy”, Georgia Institute of Technology, 2006, p.10.
[20]. 蔡玉林,高溫合金的金相研究,國防工業出版,1986 年,p3-4。
[21]. J. J. Jackson, M. J. Donachie, R. J. Henricks and M. Gell, “The effect of volume percent of fine γ'' on creep in Ds Mer-M200+Hf”, Materials Transactions, vol.8, 1977, pp.1615-1620.
[22]. T. Murakμumo, T. Kobayashi, Y. Koizumi and H. Harada, “Creep Behaviour of Ni-Base Single-Crystal Superalloys with Various γ'' Volume Fraction”, Acta Materialia, vol.52, 2004, pp.3737-3744.
[23]. G. K. Bouse and M. R. Behrendt, “Mechanical Properties of Microcast-X Alloy 718 Fine Grain Investmevt Castings”, Metals and Meterials Society, EA Loria, 1989, pp.319-328.
[24]. Chester T. Sims, Norman S. Stoloff and William C. Hagel, Superalloys II, John Wiley & Sons, 1987.
[25]. 莊東漢,材料破損分析,五南圖書出版股份有限公司,台灣,2007 年。
[26]. Denny A. Jones, Principles and Prevention of Corrosion, Macmillan Publishing Company, 2nd edition, New York, 1992.
[27]. A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, 2002.
[28]. 白清源,鎳基超合金Haynes 230 放電表面合金化與高溫氧化性質研究,台灣大學材料科學與工程研究所,2006 年。
[29]. J. Doychak, “Oxidation Behavior of High Temperature Intermetallics”, Intermetallic Compounds, vol. 1, ed. by J. H. Westbrook, and R. L.
Fleischer, John Wiley and Sons Inc., New York, 1995, pp. 977-979.
[30]. 陳仁宏,“鎳基超合金CMX4 等溫及熱週期之高溫氧化行為”,防蝕工程,第十二卷,第一期,1998 年,第12~18 頁。
[31]. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, London and New York, 1988.
[32]. R. C. Reed, The Superallys Fundamentals and Applications, Cambridge University Press, 2006.
[33]. Y. Shida and H. Anada, “Oxidation behavior of binary Ti-Al alloys in high temperature air environment”, Materials Transactions, JIM, vol.34, no. 3, 1993, pp. 236-242.
[34]. R. Beye, M. Verwerft, J. T. M. De Hosson, and R. Gronsky, “Oxidation subscale of γ-titanium aluminide”, Acta Materialia, vol. 44, no. 10, 1996, pp.4225-4231.
[35]. 刁美宏,單方向凝固Rene142 超合金高溫氧化行為之研究,義守大學機械與自動化工程學系碩士論文,民國103 年。
[36]. M. E. Kassner and M. T. Perez-Prado, Fundamentals of Creep in Metals and Alloy 2nd Edition, Elsevier Ltd, 2004, pp.7-29.
[37]. J. Cadek, Creep in Metallic Materials, Material Science, Czechoslovakia, 1988, pp.177-200.
[38]. J. Cadek, Creep in Metallic Materials, Material Science, Czechoslovakia, 1988, pp.177-200.
[39]. C. A. Keyser, Materials Science in Engineering 3rd edition, Prentice Hall, USA, 1956, pp.107-113.
[40]. W. F. Smith, Foundation of materials science and engineering 2nd edition, McGraw-Hill, Inc., New York, 1994, pp.252-256.
[41]. 薄慧雲,A Study on the Elevated Temperature Brittleness and Fracture Mecnanism of Mar-M247 Superalloy,交通大學材料科學與工程所博士
論文,1998 年。
[42]. 何維彬,熱處理對MAR-M247 鎳基超合金單方向凝固之高溫機械性質
影響,義守大學材料科學與工程學系碩士論文,民國102 年,第27-28
頁。
[43]. T. H. Courtney, Mechanical Behavior of Materials 2nd edition, McGraw-Hill., New York, 2000.
[44]. T. H. Courtney, Mechanical Behavior of Materials 2nd edition, McGraw Hill., New York, 2000.
[45]. S. Jason, Microstructure and High Temperature Creep of Platinum Group Metal Modified Nicel Base Superalloys, The University of Michigam., USA, 2010.
[46]. 邱茂盛,鋁元素及固溶熱處理冷卻速率對單方向凝固CM247LC 鎳基超合金之高溫潛變及氧化特性之研究,義守大學材料科學與工程學系
博士論文,民國104 年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊