(3.238.173.209) 您好!臺灣時間:2021/05/16 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭明政
研究生(外文):Ming-Cheng Cheng
論文名稱:紋理合成技術在透視失真紋理合成及視覺風格轉換的研究
論文名稱(外文):The Research of Texture Synthesis for Perspective Distorted Texture and Visual Style Transfer
指導教授:郭忠民郭忠民引用關係
指導教授(外文):Chung-Ming Kuo
學位類別:博士
校院名稱:義守大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:77
中文關鍵詞:紋理合成視覺風格轉移
外文關鍵詞:Texture Synthesisvisual style transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
透視失真的紋理普遍存在真實世界中,這一類型的紋理大部份是人為因素所導致,例如攝影時沒有垂直面對景物拍攝就會產生有透視感的影像,因此產生了透視失真的紋理,傳統以區塊為基礎的紋理合成法並不適用於這類型的紋理, 在這份研究中我們將建構一個自動修正模組,使用這一修正模組自動修正透視失真的紋理,然後再進行紋理合成,同時也會改進某些以區塊為基礎的紋理合成法的缺點,使用混合合成法來改進區塊合成時邊界的不連續性,並使用修改過的粒子群聚法(PSO)來增進計算效率。
以往的影像視覺風格轉換法並非完全自動,太依賴個人主觀想法,因此發展一個可以自動完成影像視覺風格轉換並高度符合使用者需求的影像視覺風格轉換演算法是必要的,我們將發展一有效的方法,對區塊大小做activity guided分析,找出最適合做視覺風格轉換的區塊大小,使用混合合成法來改進區塊合成時邊界的不連續性,並使用修改過的粒子群聚法(PSO)及區塊配對法來增進合成效率。

Perspective distorted textures are pervasive in man-made and real world, which are usually captured by camera lens with non-vertical camera axis. However the conventional texture synthesis approaches cannot be applied to non-parallel textures. In this research, we construct a control structure correction model based on an automatic rectification approach to synthesize the appearance of the perspective distorted textures faithfully. Furthermore, some common drawbacks of patch-based sampling algorithm such as blending procedure and high computational cost will be improved. In this research, we develop a hybrid blending scheme to improve visual transition artifacts along patch boundaries, and also apply Particle Swarm Optimization (PSO) to improve the computational efficiency.
The research of image visual characteristics is motivated from texture synthesis techniques. Generally, the success of these visual style transfer applications is inherently user oriented and highly depends on the subjective personal thoughts also. Therefore, a method with the reasonable estimation values to synthesize a styled texture which would meet the user preferences is highly desirable. In this research, the algorithm starts with an activity guided analysis for adaptive patch-based visual characteristics transfer, which is not only more efficient than conventional methods but also with pleasing visual quality. Then, the Particle Swarm Optimization (PSO) accelerated scheme with a modified match criterion which can effectively search and the approximate best location that matches the synthesized target patch according to user-specified features. In addition, a hybrid blending approach ensures a Coherence Match to improve the transition effect between the overlapping boundaries of adjacent patches.

ABSTRACT I
中文摘要 III
誌謝 IV
Acknowledgements V
Chapter 1 INTRODUCTION 1
Chapter 2 RELATED WORKS 9
2.1 Perspective Distorted Textures Using Control Structure Correction 9
2.2 Artistic styles transfer 13
Chapter 3 TEXTURE SYNTHESIS FOR PERSPECTIVE DISTORTED TEXTURE 16
3.1 PDT synthesis 18
3.2 Acceleration scheme 28
3.3 Hybrid blending scheme 30
Chapter 4 ARTISTIC STYLES TRANSFER 32
4.1 Activity analysis for adaptive patch-based synthesis approach 32
4.2 Features Extraction and Normalization 36
4.3 Similarity matching 38
Chapter 5 EXPERIMENTL RESULTS 45
5.1 The comparison of the decoration in boundary zones 45
5.2 Evaluation of acceleration scheme 47
5.3 Visual evaluation of distorted texture synthesis 48
5.4 Artistic styles transfer 50
Chapter 6 CONCLUSIONS AND FUTURE WORKS 57
REFERENCE 59
PUBLICATIONS 65

[1]K. Sangeetha1, Dr. P. Sengottuvelan and E. Balamurugan, “Improved Exemplar Based texture Synthesis Method for Natural Scene Image Completion, “ International Journal of Computer Science Issues, Vol. 8, Issue 5, No 2, September 2011.
[2]A. Shah, P. Bhatt and K. J. Modi, “Image Enhancement Techniques by Texture Synthesis, “ International Journal of Emerging Technology and Advanced Engineering, Volume 2, Issue 1, January 2012.
[3]P. Bhatt, S. Patel and R. Pandit, “Comparative Analysis of Interpolation and Texture Synthesis Method for Enhancing Image,“ International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 1, January 2013.
[4] Ankitha A, “Exemplar Based Image Inpainting,“ Journal of VLSI and Signal Processing, Vol 4, Issue 2, pp. 13-16, Mar-Apr. 2014.
[5]H. S. Lee, “A New Image Super Resolution by Texture Transfer,” IEEE International Conference on Image Processing, pp. 3915-3918, 2014.
[6]U. S. Thakur and O. Chubach, “Texture Analysis and Synthesis using Steerable Pyramid Decomposition for Video Coding, ” IEEE International Conference on Image Processing, pp. 204-207, 2015.
[7]C. H. Li, "A Study of Art-Based Rendering and Example-Based Texture Synthesis," Ph.D. Thesis, The Department of Computer Science and Engineering, National Chung-Hsing university, Taiwan, ROC, Jan., 2004.
[8]S. C. Zhu, X. Liu and Y. N. Wu, “Exploring texture ensembles by efficient Markov chain MonteCarlo,” IEEE Trans. On Pattern Anal. Machine Intell., vol.22, no.6, pp.554-569, 2000.
[9]A. A. Efros and T. K. Leung, "Texture Synthesis by Non-Parametric Sampling," in Proceedings of International Conference on Computer Vision, Greece , pp. 1033-1038, 1999.
[10]L. Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured vector quantiation”, Proc. Of SIGGRAPH, pp.479-488, 2000.
[11]M. Ashikhmin, "Synthesising natural textures," ACM Symposium on Interactive 3D Graphics, pp.217-226, 2000.
[12]M. Ashikhmin, "Fast Texture Transfer," IEEE Computer Graphics and Applications, vol. 23, no. 4, pp. 38-43, 2003.
[13]A. Nealen and M. Alexa, "Hybrid Texture Synthesis," in Proceedings of Eurographics Symposium on Rendering, pp. 97-105, 2003.
[14]A. A. Efros and W. T. Freeman, "Image Quilting for Texture Synthesis and Transfer," in Proceedings of SIGGRAPH 2001, pp. 341-346, 2001.
[15]L. Liang, C. Liu, Y. Q. Xu, B. Guo, and H. Y. Shum, "Real-Time Texture Synthesis by Patch-Based Sampling," ACM Transactions on Graphics, vol. 20, no. 3, pp.127-150, 2001.
[16]C. M. Kuo, W. H. Chang, M.-Y. Fang and G.-D Huang, “An Effective adaptive patch-based texture transfer algorithm using particle swam optimization, “ ICIC express Letters, Part B: Applications, vol. 2, no. 1, pp.183-188, 2011.
[17]W. Yin, J. Qiao and G. Han, “A Texture Synthesis Method Based on Multi-resolution Matching,” Journal of Information & Computational Science, October 2013.
[18]P. Patel, S. Gupta, H. Zafar and N. Deotale, “Structure and Texture Synthesis,” International Journal of Students Research in Technology & Management, Vol 1(2), pp. 82-88, April 2013.
[19]L. Wang, “Intellingent Optimization with Applications,” Tsinghua University & Springer Press, Beijing, 2001.
[20]Y. Lin, W. C. Lin and J. Hays, “Near-regular texture analysis and manipulation,” ACM SIGGRAPH, pp. 368-376, 2004.
[21]W. C. Lin, J. Hays, C. Wu. V. Kwatra and Y. Lin, “Quantitative evaluation of near regular texture synthesis algorithms,” IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 18, no. 5, pp. 427-434, 2006.
[22]L. Aurdal, "The Hough transform," INF 3300, INF4300, Norsk Regnesentral, http:// www.nr.no, 2006.
[23]R. O. Duda and P. E. Hart, "Use of the Hough Transformation to Detect Lines and Curves in Pictures," Comm. ACM, vol. 15, pp.11–15, 1972.
[24]F. Shen and H. Wang, “Corner detection based on modified Hough transform,” Pattern Recognition Letters, vol.23 no.8, pp. 1039-1049, 2002.
[25]R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Comm. ACM, vol. 15, pp. 11-15, 1972.
[26]http://registry.gimp.org/node/24600.
[27]A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin., “Image Analogies,” Proceedings of SIGGRAPH 2001, pp. 327-340, 2001.
[28]H. C. Lee, S. H. Seo, S. T. Ryoo and K. H. Yoon, “Directional Texture Transfer,” Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering (NPAR 2010), pp.43-48, 2010.
[29]X. Xie, F. Tian and H. S. Seah, “Feature Guided Texture Transfer Synthesis (FGTS) for Artistic Style Transfer,” 2nd ACM International Conference on Digital Interactive Media in Entertainment and Arts, pp.44-49, 2007.
[30]A. Martin and S. Tosunoglu, "Image processing techniques for machine vision," Florida Conference on Recent Advances in Robotics, pp. 1-9, 2000.
[31]Y. Meng, Y. Zhang, W. Li, Y. Pang, “Image Analogy Using Patch-Based Texture Synthesis,” International Conference on Communications, Circuits and Systems, pp. 974-978, 2004.
[32]L. Y. Wei, "Deterministic Texture Analysis and Synthesis using Tree Structure Vector Quantization," in Proceedings of the XII Brazilian Symposium on Computer Graphics and Image Processing, pp. 207-213, 1999.
[33]M. A. Penna and R. R. Patterson, “Projective Geometry and Its Applications” to Computer Graphics Prentice-Hall, Englewood Cliffs, NJ, 1986.
[34]R. Szeliski and H. Y. Shum, “Creating full view panoramic mosaics and environment maps,” Proc. Of SIGGRAPH, pp.251-258, 1997
[35]C. C. Chang, T. C. Lu and J. B. Ya, “VQ codebook searching algorithm based on correlation property,” Fundamental Informaticae, vol. 76, no. 1-2, pp. 39-57, 2007.
[36]C. F. Li, Q. X. Zhu and Z. Q. Geng, “Multi-objective particle swarm optimization hybrid algorithm: An application on industrial cracking furnace,” Ind. Eng. Chem. Res., vol. 46, pp. 3602-3609, 2007.
[37]A. I. F. Vaz and E. M. G. P. Fernandes, Optimization of nonlinear constrained particle swarm, Technological and Economic Development of Economy, vol. 12, pp. 30-36, 2006.
[38]A. Martin and S. Tosunoglu, "Image processing techniques for machine vision," Florida Conference on Recent Advances in Robotics, pp. 1-9, 2000.
[39]N. Aggarwal and W. C. Karl. “Line detection in images through regular Hough transform,” IEEE Trans. On Image Process., vol. 15, no. 3, pp. 582-591, 2006.
[40]J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. Of IEEE International Conference on Neural Networks, vol 4, pp. 1942-1948, 1995.
[41]J. Kennedy and W. Spears, “Matching algorithms to Problems: An experimental test of the Particle swarm and some genetic algorithms on the multimodal problem generator,” Proc. Of IEEE World Congress on Computational Intelligence, pp. 74-77, 1998.
[42]S. Sulaiman, S. M. Shamsuddin, F. Forkan and A. Abraham, “Intelligent Web caching using neuro computing and particle swarm optimization algorithm,” Proc. Of the 2nd Asia International Conference on Modelling and Simulation, pp. 13-15, 2008.
[43]M. J. D. Powell, “The theory of radial basis function approximation in 1990,” Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms, and Radial Basis Functions, Oxford University Press, pp. 105-210, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文