(3.238.130.97) 您好!臺灣時間:2021/05/18 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林家偉
研究生(外文):Jia-Wei Lin
論文名稱:探討18F-FDG PET SUVmax與生理參數之關聯性
論文名稱(外文):Investigating the Relationship between SUVmax of 18F-FDG PET and Physiological Parameters
指導教授:黃詠暉
指導教授(外文):Yung-Hui Huang
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:18F-FDG正子電腦斷層影像最大標準攝取值相關性分析
外文關鍵詞:18F-FDG PET/CTSUVmaxAnalysis of Correlation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:729
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
正子發射斷層攝影(Positron Emission Tomography, PET)造影技術,是目前臨床對於腫瘤的偵測、分期及治療效果的評估與追蹤使用最廣泛的診斷工具。臨床醫師除了利用肉眼判讀PET影像作為主要的診斷依據,其最大標準攝取值(Maximum Standard Uptake Value, SUVmax)亦能提供PET影像像素的量化數據,輔佐醫師診斷並提高診斷的準確度。本研究將利用年齡進行分組,探討其大腦、小腦、心肌壁、肝臟及肺臟的最大標準攝取值與半高全寬(Full Width at Half Maximum, FWHM)、年齡、身體質量指數(Body Mass Index, BMI)及體重之關聯性。
本研究採用回溯性分組實驗設計,收集經核醫專科醫師診斷之無異常報告及18F-FDG正子電腦斷層影像(18F-FDG PET/CT)共90筆,並使用2D手動圈選法及區域成長法計算大腦、小腦、心肌壁、肝臟及肺臟的SUVmax。根據不同年齡對90筆18F-FDG PET/CT影像進行分組,使用相關性分析探討大腦、小腦、心肌壁、肝臟及肺臟的SUVmax與FWHM、年齡、BMI、體重的相關性。接著,將具顯著相關性的SUVmax與參數,繪製誤差圖、散佈圖及進行線性迴歸分析等方法以建立合理相關性模型提供臨床參考之用途。
結果顯示年齡與大腦、小腦、肝臟、肺臟之SUVmax及BMI與心肌壁SUVmax的相關係數均高達0.90,相關程度為高度相關且線性迴歸模型的模型解釋能力(R2)均高於80%,隨着年齡改變將會影響大腦、小腦、肝臟及肺臟的葡萄糖攝取量,另外隨著BMI改變會影響心肌壁的葡萄糖攝取量。因此本研究的相關性模型可作為成人健康檢查無異常疾病健康族群葡萄糖代謝率的參考。未來仍需增加無異常者的樣本數及異常的案例一併納入討論,以瞭解相關性模型的變化情況。

Positron Emission Tomography (PET) imaging is widely used in clinical diagnosis for tumor detection, staging and treatment evaluation. In addition to the clinician interpret PET images with the naked eye as the main basis for the diagnosis, the maximum standard uptake value (SUVmax) can also provide quantitative data from PET imaging and improve the accuracy of diagnosis. This study was used conducted age group to investigate the correlation of SUVmax from brain, cerebellum, myocardial wall, liver and lungs with Full Width at Half Maximum (FWHM), Body Mass Index (BMI) and body weight.
This study is a retrospective experiment, collected totally 90 cases of normal 18F-FDG PET/CT images by nuclear medicine physician diagnostic report. The 2D manually draw method and seed region growing method were used to calculate the SUVmax from brain, cerebellum, heart, liver and lungs. According to the different age group of 90 cases explored the relation among the SUVmax from brain, cerebellum, myocardial wall, liver and lungs with FWHM, age, BMI and body weight by using correlation analysis. Subsequently, the significant correlation with the parameters of SUVmax were be used to draw the error plot, scatter plot. The linear regression analysis was used to establish correlated models to providing clinical assistant reference purposes.
The relation coefficient between age and brain, cerebellum, liver, lungs SUVmax were higher than 0.90 in this study. The R2 of linear regression models between age and brain, cerebellum, liver, lungs SUVmax were higher than 80%. The SUVmax of brain, cerebellum, liver and lungs are varieties with patient’s age. Meanwhile, the glucose uptake of myocardial wall is affected by the index of BMI. Hence, the correlated models in this study might be used to a reference of glucose metabolism rate for healthy adult population. There are more abnormal and normal cases involved in the future study in order to figure out the details variety of glucose metabolism rates.

中文摘要…………………………………………………………………..i
英文摘要………………………………………………………………….ii
誌謝………………………………………………………………………iii
目錄………………………………………………………………………iv
圖目錄……………………………………………………………………..v
表目錄……………………………………………………………………vi
第一章 緒論………………………………………………………………1
1.1前言………………………………………………………………..1
1.2研究動機與目的 ………………………………………………....4
第二章 文獻探討………………………………………………………....6
2.1葡萄糖與18F-FDG代謝之關聯性…………...…………………....8
2.2核子醫學造影原理…………………………………..…………..11
2.3正子發射斷層攝影原理…………………………………..……..12
2.4標準攝取值…………………………………………………..…..22
第三章 研究材料與方法…………………………………….………….24
3.1研究資料……………………………………………………..…..25
3.2研究流程……………………………………………………..…..25
3.3研究方法……………………………………………………..…..26
3.3.1實驗設計…………..…………………………………….....26
3.3.2定義感興趣區域……………..…………………………….27
第四章 統計分析…………………………………………….………….31
4.1描述性統計………………………………………………………31
4.2相關分析(Correlation Analysis)………………………….……...34
4.3迴歸分析(Regression Analysis)……………………………..…...41
4.4結果…………………………………………………………..…..49
第五章 結論與討論 …………………………………………………….50
5.1結論………………..……………………………………………..50
5.2討論…………………..…………………………………………..51
5.3未來研究方向與建議……………..……………………………..52
參考文獻…………………………………………………………..……..54
附錄一同意臨床試驗證明書……………………………………....附錄-1


[1]Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics. 2004;24(5):1411-431.
[2]Zincirkeser S, Sahin E, Halac M, Sager S. Standardized uptake values of normal organs on 18F-fluorodeoxyglucose positron emission tomography and computed tomography imaging. J Int Med Res. 2007;35(2):231-36.
[3]Newberg A, Alavi A, Reivich M. Determination of regional cerebral function with FDG-PET imaging in neuropsychiatric disorders. Semin Nucl Med. 2002;32(1):13-34.
[4]Lin CY, Ding HJ, Lin CC, Chen CC, Sun SS, Kao CH. Impact of age on FDG uptake in the liver on PET scan. Clin Imaging. 2010;34(5):348-50.
[5]Kuhnert G, Boellaard R, Sterzer S, Kahraman D, Scheffler M, Wolf J, Dietlein M, Drzezga A, Kobe C. Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis. Eur J Nucl Med Mol Imaging. 2016;43(2):249-58.
[6]Pacak J, Tocik Z, Cerny M. Synthesis of 2-deoxy-2-fluoro-D-glucose. Journal of the Chemical Society. 1969;18(1)77-80.
[7]Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189(3):847-50.
[8]Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M,Kuhl DE. Labeled2-deoxy-D-glucoseanalogs:18F-labeled2-deoxy-2-fluoro-D-glucose,2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labeled Compounds Radiopharm.1969;14(2):174-83.
[9]Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, Oster ZH, Sacker DF, Shiue CY, Turner H, Wan CN, Wolf AP, Zabinski SV. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21(7):670-75.
[10]Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O''shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11(8):2785-808.
[11]Shao X, Shao X, Wang X, Wang Y. Characterization of brown adipose tissue 18F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population. Nucl Med Biol. 2016;43(1):7-11.
[12]Liu G, Li Y, Hu P, Cheng D, Shi H. The combined effects of serum lipids, BMI, and fatty liver on 18F-FDG uptake in the liver in a large population from China: an 18F-FDG-PET/CT study. Nucl Med Commun. 2015;36(7):709-16.
[13]Groh E,Botkin C,Oliver D, Osman M. Liver SUV in whole body 18F FDG-PET/CT: Stability and correlation with age and gender. J Nucl Med. 2010;51(2):2125-128.
[14]Meyer M. Mean standardized uptake values (SUV) by normal lung and liver tissue: A quantitative 18F-FDG PET study in relation to age. J Nucl Med. 2007;48(2):291-94.
[15]Minamimoto R, Takahashi N, Inoue T. FDG-PET of patients with suspected renal failure: standardized uptake values in normal tissues. Ann Nucl Med. 2007;21(4):217-22.
[16]Srinivas SM, Dhurairaj T, Basu S, Bural G, Surti S, Alavi A. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med. 2009;23(4):341-48.
[17]Visser EP1, Philippens ME, Kienhorst L, Kaanders JH, Corstens FH, de Geus-Oei LF, Oyen WJ. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J Nucl Med. 2008;49(6):892-98.
[18]Hadi M1, Bacharach SL, Whatley M, Libutti SK, Straus SE, Rao VK, Wesley R, Carrasquillo JA. Glucose and insulin variations in patients during the time course of a FDG-PET study and implications for the "glucose-corrected" SUV. Nucl Med Biol. 2008;35(4):441-45.
[19]Bunyaviroch T1, Turkington TG, Wong TZ, Wilson JW, Colsher JG, Coleman RE. Quantitative effects of contrast enhanced CT attenuation correction on PET SUV measurements. Mol Imaging Biol. 2008;10(2):107-13.
[20]Li H1, Thorstad WL, Biehl KJ, Laforest R, Su Y, Shoghi KI, Donnelly ED, Low DA, Lu W. A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med Phys. 2008;35(8):3711-21.
[21]Juhye J, Eunjung K, Kyungah C. The Impact of Energy Substrates, Hormone Level and Subject-Related Factors on Physiologic Myocardial 18F-FDG Uptake in Normal Humans. Nucl Med Mol Imaging. 2013;47(4): 225–231.
[22]Peterson LR, Herrero P, Coggan AR, KisrievaWare Z, Saeed I, Dence C, Koudelis D, McGill JB, Lyons MR, Novak E, DávilaRomán VG, Waggoner AD, Gropler RJ. Type 2 diabetes, obesity, and sex difference affect the fate of glucose in the human heart. Am J Physiol Heart Circ Physiol. 2015;308(12):1510-16.
[23]Peterson LR, Soto PF, Herrero P, Mohammed BS, Avidan MS, Schechtman KB, Dence C, Gropler RJ. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging. 2008;1(4):424-33.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top