(3.210.184.142) 您好!臺灣時間:2021/05/13 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭弘健
研究生(外文):Hong-Jian Guo
論文名稱:摻鋁氧化鋅薄膜沉積於可撓式基板之光電特性研究
論文名稱(外文):Study of optical and electrical properties on Al-doped ZnO thin film grown on flexible substrate
指導教授:林彥勝
指導教授(外文):Yen-Sheng Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:98
中文關鍵詞:射頻磁控濺鍍摻鋁氧化鋅奈米銀粒子可撓式基板
外文關鍵詞:RF magnetron sputteringAluminum-doped Zinc Oxide(AZO)Ag nano particleflexible substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要藉由射頻磁控濺鍍將摻鋁氧化鋅(ZnO:Al,AZO)薄膜沉積於可撓式基板上,藉由調配不同的膜層厚度比及緩衝層退火處理,來最佳化於可撓式基板上沉積AZO膜層。研究中首先藉由調變不同厚度比的緩衝層(Buffer layer)及覆蓋層(Cover layer),再對緩衝層進行不同溫度的低溫退火,藉此改善緩衝層與可撓式基板間之界面。最後於選定之最佳緩衝層及覆蓋層厚度結構後,先於緩衝層表面進行不同時間的乾蝕刻處理,以利引導奈米銀粒子能均勻分布於緩衝層表面,藉以提升整體薄膜沉積於可撓式基板之光電特性。研究過程中藉由霍爾量測(Hall-effect measurement)系統來量測薄膜的導電特性,紫外光/可見光光譜儀(UV-VIS Spectrophotometer)量測薄膜的穿透率,再以掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)觀察緩衝層表面結構,及X光繞射儀(XRD)來分析整體膜層的結晶特性。研究結果顯示在AZO膜層厚度比為50nm/30nm時,先對30nm緩衝層進行70℃退火並持溫3分鐘後,再於緩衝層表面施以480s的乾蝕刻粗化處理後,於其表面沉積50s濺鍍時間之奈米銀粒子,最後完成50nm覆蓋層沉積。經量測可得最佳化沉積於可撓式基板上之AZO/nano-Ag/AZO膜層,其電阻值最低為5.266×10-5Ω-cm,並在可見光範圍具有最高穿透率87.43%,計算得其最佳光電效益指數為3.96×10-1Ω-1。

In this study, the Al-doped ZnO thin films were grown on flexible substrate by RF magnetron sputter, depend on the different percent thickness layers and thermal treatment on buffer layer, the optimum Al-doped ZnO thin film on flexible substrate had been grown. At first, the different thickness percent of buffer and cover layers had been deposited, and then different thermal temperatures were done on buffer layer to improve the interfacial bonding between buffer layer and substrate. After the optimum percent of buffer and cover layer structures were selected, the different density O2 plasma were selected to etch the surface of buffer layer, which will lead the uniform distribution of the Ag nano-particles on the surface to enhance the optoelectronic properties of AZO/ nano-Ag/ AZO layer on flexible substrate. In the study, the resistivity was measured by the Hall-effect measurement system and the optical property was measured by UV-Visible Spectrophotometer, the surface of buffer layer was analyzed by Atomic force microscopy (AFM) and scanning electron microscopy (SEM), the X-ray diffraction (XRD) was used to analysis the crystalline of thin film. As the results, the percent of AZO film at 50nm/30nm was selected, the 30 nm buffer layer was treated at 70℃ for 3 minutes and dry etched for 480 seconds, to lead the distribution of 50 seconds Ag nano particles and finally the 50nm AZO cover layer was deposited, the optimum AZO/nano-Ag/AZO thin films on flexible substrate had been grown. The low resistance is 5.26×10-5Ω-cm, the average transmittance in visible light is 87.43%, and the optimum figure of merit is 3.96×10-1Ω-1.

中文摘要 I
Abstract III
致謝 V
總目錄 VII
圖目錄 X
表目錄 XIII
第1章、緒論 1
1.1前言 1
1.2 研究動機 2
第2章、理論基礎與文獻回顧 4
2.1 可撓式基板 4
2.1.1可撓式基板的種類及特性 4
2.1.2可撓式基板應用 7
2.2 可撓式基板薄膜沉積原理 9
2.2.1濺鍍製程原理 9
2.2.2薄膜沉積可撓式基板特性 13
2.2.3 可撓式基板熱處理 16
2.3透明導電膜沉積於可撓式基板特性 18
2.3.1 透明導電膜之應用與種類 18
2.3.2摻鋁氧化鋅(AZO)之薄膜特性 20
2.3.3 含奈米金屬之摻鋁氧化鋅(AZO)之薄膜特性 24
第3章、研究步驟與方法 30
3.1研究流程圖 30
3.2製程設備 33
3.2.1 射頻磁控濺鍍機 33
3.2.2 快速升溫熱退火 36
3.3光電特性量測分析儀器 38
3.3.1 霍爾載子量測系統 38
3.3.2 UV-Visible 光譜儀 41
3.4 微結構分析儀器 43
3.4.1 X光繞射機 43
3.4.2 原子力顯微鏡 46
3.4.3 場發射掃描式電子顯微鏡 49
第4章、結果與討論 51
4.1 沉積於可撓式基板之膜層選擇 51
4.1.1 AZO及ZnO之光電特性分析 51
4.1.2 AZO及ZnO之結構特性分析 54
4.2 沉積於可撓式基板之緩衝層厚度選擇 57
4.2.1 不同厚度緩衝層下整體膜層光電特性 57
4.2.2 不同厚度緩衝層之結構特性分析 60
4.3 薄膜於可撓式基板上之熱處理研究 64
4.3.1 熱處理對整體膜層於可撓式基板上光電特性分析 64
4.3.2 熱處理對薄膜於可撓式基板上之結構特性分析 67
4.4 含奈米銀之AZO膜層沉積於可撓式基板研究 71
4.4.1 膜層之光電特性分析 71
4.4.2 膜層之結構特性分析 74
第5章、結論與未來研究方向 77
參考文獻 79
學術著作 83

[1]Vinh Ai Dao, Tran Le, Tuan Tran, Huu Chi Nguyen, Kyunghae Kim,Jaehyeong Lee, Sungwook Jung, N.Lakshminarayan, Junsin Yi, Jour. of Electro. ,23, 356-360 , 2008.
[2]Gadisa A, Svensson M, Andersson MR, Inganäs O, Appl. Phys. Lett. 84 , 3906 ,2004.
[3]C. Adachi, K. Nagai, and N.Tamoto, Appl. Phys. Lett. 66 , 2679,1995.
[4]Minami T, Thin Solid Films , 516, 5822- 5828,2008.
[5]Hyung Jun Cho, Sung Uk Lee, Byungyou Hong, Yong Deok Shin, Jin Young Ju, Hee Dong Kim, Mungi Park, Won Seok Choi, Thin Solid Films, 518 , 2941–2944 , 2010.
[6]郭倩丞、李正中,“TCO透明導電薄膜”,國立中央大學,2010.
[7]江書賢,“新型透明導電薄膜LFTO”,解密國家寶藏,2013.
[8]蔡豐羽,“材料與製程挑戰有解可撓式AMOLED商用可期
”,新電子,2013.
[9]DIGITIMES企劃 ,“新一代可撓性面板技術與商品應用趨勢 ”,活動網,2012.
[10]地球圖輯隊,“像衣服一樣日本發明電子皮膚 ”,科技新報,2016.
[11]白木靖寬/吉田貞史,“薄膜工程學”,全華圖書股份有限公司,2008.
[12]東南科技大學,“薄膜沉積”,東南科技大學,2006.
[13]柯賢文,“表面與薄膜處理技術”,全華圖書股份有限公司,2012.
[14]莊達人,“VLSI 製造技術”,高立圖書有限公司,p357,1996.
[15]F. A. Ponce, J. S. Major, W. E. Plano, and D. F. Welch, Appl. Phys. Lett.65, 2302,1994.
[16]Verhoeven, J.D. Fundamentals of Physical Metallurgy, Wiley, New York, p326,1975.
[17]江松勳,碩士論文,”AZO 透明導電膜之製備與特性分析”,國立成功大學化學工程學系,2006.
[18]黃宏欣,“光電平面顯示器導論-透明導電膜”,正修科技大學電機工程學系,2009.
[19]Hua Wang , Jiwen Xu , Mingfang Ren , Ling Yang, J. of Mater. Sci.: Mater. in Electro. , 19, 1135-1139,2008.
[20]J. H. Lee, J. of Electroceramics ,23, 512, 2009.
[21]Bin-Zhong Dong, Hao Hu, Guo-Jia Fang, XingZhong Zhao, Da-Yu Zheng and Yuan- Ping Sun , J.of Appl. Phys. ,103, 073711, 2008.
[22]Dengyuan Song, James Xia, Eun-Chel Cho and Armin G. Aberle ,IEEE., 2002.
[23]G. Neumann, Phys. Status Solids, Vol .105, p.605,1981
[24]Yasuhiro Igasaki and Hiromi Saito,Thin Solid Films, Vol.199, p.223-230, 1991.
[25]M.T.Young and S.D Keun,Thin Solid Films, Vol.410, p.8-13,2002.
[26]D. Dimova-Malinovska, N. Tzenov, M. Tzolov and L. Vassilev,Materials Science and Engineering ,Vol.52, p.59, 1998.
[27]Fierro, J. L. G. Metal Oxides: Chemistry & Applications. 6000 Broken Sound Parkway NW, Suite 300: Taylor & Francis Group. 2006.
[28]Tetsuay Yamamoto and Hiroshi Katayama-Yoshida, J. CrystalGrowth , Vol.214, p.552 ,2002.
[29]D. H. Zhang, T. L. Yang, Q. P. Wang and D. J. Zhang, Materials Chemistry and Physics, Vol. 68, p.233, 2001.
[30]V. Singh and R. M. Mehra, J. Appl. Phys, Vol. 90, p.566,2001.
[31]R.K. Shukla, , Anchal Srivastava, Atul Srivastava, K.C. Dubey,Journal of Crystal Growth,p427-431,2006.
[32]R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, Appl. Phys. Lett,84 , 4614,2004.
[33]Sahu D.R., Lin S.Y., Huang J.L., Thin Solid Films ,516, 4728-4732,2008.
[34]Dagang Miao, Shouxiang Jiang , Hongmei Zhao , Songmin Shang , Zhuoming Chen, Journal of Alloys and Compounds, 2014.
[35]Choi K.H., Kim J.Y., Lee Y.S., Kim H.J.,. Thin Solid Films,341, 152-155 , 1999.
[36]Klöppel A, Kriegseis W, Meyer BK, Scharmann A, Daube C, Stollenwerk J, and Trube,J, Thin Solid Films,365, 139,2000.
[37]Sahu DR, Huang JL , Thin Solid Films,515, 876-879,2006.
[38]Sahu D.R., Lin S.Y., Huang J.L., Appl. Surf. Sci., 252, 7509-7514,2006.
[39]Sahu D.R.,Huang J.L., Appl. Surf. Sci., 253, 827-832,2006.
[40]Sahu D.R., Huang J.L., Thin Solid Films, 516, 208-211,2007.
[41]Fushan Li, Yongzhi Zhang, Chaoxing Wu, Zhixiao Lin, Beibei Zhang, Tailiang Guo,Vacuum,2012
[42]陳正偉,“建構奈米金類網狀結構於摻鋁氧化鋅薄膜以提升光電特性之研究”,義守大學電子工程研究所碩士班碩士論文,2015.
[43]莊耿林,碩士論文,“以霍爾效應量測法對氮化鎵半導體作電性分析”,國立中山大學物理學系,2003
[44]張育唐、陳藹然,“X-光繞射與布拉格定律”,國立台灣大學化學系,2011.
[45]李其紘,“原子力顯微鏡的基本介紹”,科學研習,No:52-5,2013
[46]羅聖全,“掃瞄式電子顯微鏡(SEM)”,科學研習,No.52-5,2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔