(3.238.96.184) 您好!臺灣時間:2021/05/08 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉孟承
研究生(外文):Meng-Cheng Yeh
論文名稱:以PDPP3T:PCBM本體異質結構提升鈣鈦礦太陽能電池特性
論文名稱(外文):Integrated the PDPP3T:PCBM Bulk Heterojunction with Perovskite toward Efficient Solar Cells
指導教授:蘇水祥
指導教授(外文):Shui-Hsiang Su
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:鈣鈦礦太陽能電池紅外光
外文關鍵詞:perovskitesolar cellnear-infrared
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨以poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}- alt -{[2,2’:5’,2’’-terthiophene]-5,5’’-diyl}] (PDPP3T)與[6,6]-phenyl C61-butyric acid methyl ester (PC61BM)混合成本體異質結構(bulk heterojuction, BHJ),堆疊於有無機金屬鹵化物鈣鈦礦(perovskite)主動層上製作太陽能電池並探討其特性。透過PDPP3T將太陽能電池吸收波長延長至近紅外光800~1000 nm波段,藉此提升元件短路電流。
研究結果顯示,優化PDPP3T:PCBM之混合比例為1:4,可獲得較平坦的表面粗糙度以及適當的光吸收強度,由控制塗佈轉速於1000 rpm/60s下之PDPP3T:PCBM有較高光吸收率,提供給太陽能電池額外之光電流,藉此提升能量轉換效率(power conversion efficiency, PCE)。在優化條件下,展現出優異的再現性以及低遲滯現象,並在近紅外光800~1000 nm波段呈現外部量子效率15%。最佳化之鈣鈦礦太陽能電池元件結構為 ITO/PEDOT:PSS/MAPbI3/PDPP3T:PCBM/Ag,元件特性:開路電壓(open circuit voltage, VOC)為0.91 V、短路電流密度(short circuit current density , JSC)為14.13 mA/cm2、填充因子(fill factor, F.F.)為61.33%及PCE為7.93%。


In this study, the in/organometal halide perovskite solar cells (pero-SCs) have been optimized and developed in absorption of near infrared (NIR). Using the blend of a near infrared absorbing material poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}- alt -{[2,2’:5’,2’’-terthiophene]-5,5’’-diyl}] (PDPP3T) and [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) as a bulk heterojunction (BHJ) stacked on perovskite active layer to extend the wavelength of absorption around 800~1000 nm. Moreover, using this advantage of NIR absorption could be effective toward high power conversion efficiency (PCE) due to the increase of photo-current.
Experimental results reveal that the optimized recipe of PDPP3T:PCBM to effectively absorb the sunlight and provide photo-current by NIR absorption is 1:4 blend ratio at specific thickness control by spinning at 1000 rpm/60s. Moreover, under the optimized structure of ITO/PEDOT:PSS/MAPbI3/PDPP3T:PCBM/Ag shows external quantum efficiency (EQE) of 15% in wavelength of 800~1000 nm, low hysteresis, and significant reproducibility. The champion device shows open circuit voltage (VOC) of 0.91 V, short circuit current density (JSC) of 14.13 mA/cm2, fill factor (F.F.) of 61.33%, and PCE of 7.93% at AM 1.5G of 100 mW/cm2.


中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.1.1 前言 1
1.1.2 太陽能電池類型與種類 2
1.1.2.1 矽晶太陽能電池(Silicon based solar cell) 2
1.1.2.2 薄膜太陽能電池(Thin-film solar cell) 3
1.1.2.3 有機太陽能電池(Organic solar cell, OSC) 4
1.1.2.4 有無機金屬鹵化物鈣鈦礦太陽能電池(In/organometal halide perovskite solar cell) 6
1.2 研究動機 6
第二章 文獻回顧 9
2.1 有機太陽能電池 9
2.2 有機太陽能電池結構分類 10
2.2.1 單層有機太陽能電池 11
2.2.2 雙層有機太陽能電池 11
2.2.3 混合層有機太陽能電池 11
2.2.4 P-i-N型有機太陽能電池 12
2.3 有無機金屬鹵化物鈣鈦礦太陽能電池 12
2.4 有無機金屬鹵化物鈣鈦礦太陽能電池之運作原理 14
2.4.1 光能吸收(Light absorption) 14
2.4.2 激子擴散(Exciton diffusion) 15
2.4.3 電荷分離(Charge separation) 15
2.4.4 電荷收集 (Charge collection) 15
2.5 鈣鈦礦太陽能電池之特性分析 16
2.5.1 短路電流(Short circuit current, Isc) 16
2.5.2 開路電壓(Open circuit voltage, Voc) 17
2.5.3 填充因子(Fill factor, F.F.) 18
2.5.4 能量轉換效率(Power conversion efficiency, PCE) 18
2.5.5 元件特性衰退之原因 19
2.6 鈣鈦礦太陽能電池元件材料 19
2.6.1 陽極(Anode) 19
2.6.2 電洞傳輸層(Hole transporting layer, HTL) 19
2.6.3 主動層(Active layer) 20
2.6.4 本體異質結構層(Bulk heterojunction, BHJ) 22
2.6.5 陰極 (Cathode) 22
第三章 實驗方法與流程 31
3.1 實驗材料 31
3.2 元件製作 31
3.2.1 前段流程 31
3.2.2 後段製程 33
3.3 製程設備 35
3.3.1 超音波震盪器(Ultrasonic atomizer) 35
3.3.2 低水氧之氮氣手套箱(Glove box) 35
3.3.3 旋轉塗佈機(Spin coater) 35
3.3.4 真空熱蒸鍍機(Thermal evaporator) 35
3.4薄膜物性分析 36
3.4.1 太陽光模擬光源系統(Solar simulator system) 36
3.4.2 UV-vis紫外/可見光光譜儀(UV-vis spectrometer) 36
3.4.3 場發射掃描式電子顯微鏡(FE-SEM) 37
3.4.4 太陽能電池外部量子入射效率分析儀(Solar cell quantum efficiency measurement system) 37
3.4.5 原子力顯微鏡(Atomic force microscope, AFM) 38
3.4.6 X射線繞射分析儀(X-ray diffractometer, XRD) 38
第四章 結果與討論 48
4.1 預熱基板塗佈PbI2對元件特性之影響 48
4.2 有無過濾本體異質結構PDPP3T:PCBM對元件特性之影響 49
4.3 調變PDPP3T:PCBM混合比例探討元件特性 49
4.4 不同轉速PDPP3T:PCBM探討元件特性 50
4.5 調變不同PDPP3T:PCBM熱處理溫度探討元件特性 51
4.6 不同溶劑探討PDPP3T:PCBM元件特性 51
第五章 結論與未來展望 70
5.1 結論 70
5.2 未來展望 71
參考文獻 72



[1]R. D. Milan, “Renewables 2013 Global Status Report “, (2014).
[2]E. Bacquerel, “Mémoire sur les effets électriques produits sous l''influence des rayons solaires”, Cr. Acad. Sci. II. C., vol. 9, p. 561, (1839).
[3]J. Nelson, “The physics of solar cells”, Imperial College Press, London, p. 2, (2003).
[4]D.M. Chapin, C.S. Fuller, G.L. Pearson, ”A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 125, p. 676, (1954).
[5]N. J. Jeon, J. H. Noh, W. S. Yang, Y C Kim, S. C. Ryu, J. W. Seo, and Sang Il Seok, ”Compositional engineering of perovskite materials for high-performance solar cells”, Nature, vol. 517, p. 476, (2015).
[6]黃建榮,”有機太陽能電池技術發展”,光連雙月刊,No.111, (2014)
[7]G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci., vol. 7, p. 982, (2014).
[8]W. K. Lin, S. H. Su, C. C. Liu, and M. Yokoyama, “All-solution-processed inverted organic solar cell with a stacked hole-transporting layer”, Jpn. J. Appl. Phys., vol. 53, p. 11RB04, (2014).
[9]Y. S. Liu, Z. Hong, Q. Chen, W. h. Chang, H. P Zhou, T. B. Song, E. Young, Y. (M.) Yang, J. B. You, G. Li, and Y. Yang, “Integrated Perovskite/Bulk-Heterojunction toward Efficient Solar Cells”, Nano Lett., vol. 15, p. 662, (2015).
[10]Kearns D, and Calvin M., “Photovoltaic effect and photoconductivity in laminated organic systems”, J. Chem. Phys., vol. 29, p. 950, (1958).
[11]陳方中,”高分子薄膜太陽能電池”,光電技術,No.18, (2008)
[12]P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. deibel, J. D Haen, P. Heremans, J. Poortmans and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics”, Sol. Energy Mater. Sol. Cells, vol. 90, p. 2150, (2006).
[13]許千樹,”奈米結構於有機高分子太陽能電池的應用”,TCIA台灣化學科技產業會刊,第十期,(2012).
[14]S. Rait, S. Kashyap, P. K. Bhatnagar, P. C. Mathur, S. K. Sengupta and J. Kumar, “Improving power conversion efficiency in polythiophene/fullerene-based bulk heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, vol. 91, p. 757, (2007).
[15]H. Kim, W. W. So, and S. J. Moon, “The importance of post-annealing process in the device performance of poly(3-hexythiophene): Methanofullerene polymer solar cell”, Sol. Energy Mater. Sol. Cells, vol. 91, p. 581, (2006).
[16]N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, vol. 258, p. 1474, (1992).
[17]G. Li, V. Shrotriya, Y. Yao and Y. Yang, “Inversigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, J.Appl. Phys., vol. 98, p. 043704, (2005).
[18]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat Mater, vol. 4, p. 864, (2005).
[19]V. Shrotriya, Y. Yao, G. Li, and Y. Yang, “Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance”, Appl. Phys. Lett., vol. 29, p. 063505, (2006).
[20]C. C. Chen, W. H. Chang, K. Yoshimura , K. Ohya , J. B. You, J. Gao, Z. Hong, and Y. Yang, “An Effi cient Triple-Junction Polymer Solar Cell Having a Power Conversion Effi ciency Exceeding 11%”, Adv. Mater., vol. 26, p. 5670, (2014).
[21]M. Pope, H. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals”, J. Chem. Phys., vol. 38, p. 2024, (1963).
[22]D. I. K. Petritsch, “Organic solar cell architectures”, PhD Thesis by Dipl.Ing. Klaus Petritsch, (2000).
[23]H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel & N. G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Nature, vol. 2, p. 591 (2012).
[24]P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, “Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency”, Nat. Commun., vol. 5, p. 5834 (2014).
[25]D. B. Mitzi, in Progress in Inorganic Chemistry, John Wiley &Sons, Inc., p. 1, (2007).
[26]L. Etgar, “Semiconductor Nanocrystals as Light Harvesters in Solar Cells”, Materials, vol. 6, p. 445 (2013).
[27]F. Hao, C. C. Stoumpos,D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic–inorganic halide perovskite solar cells”, Nature Photonics, vol. 8, p. 489, (2014).
[28]N. K. Noel et al. “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications”, Energy Environ. Sci., vol. 7, p.3061, (2014).
[29]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide Perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc., vol. 131, p. 6050 (2009).
[30]H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel & N. G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Nature, vol. 2, p. 591 (2012).
[31]M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, vol. 501, p. 395 (2013).
[32]H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. B. You, Y. S. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science, vol. 345, p. 542 (2014).
[33]S. Luo, and W. A. Daoud, “Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design”, J. Mater. Chem. A., vol. 3, p. 8992, (2015).
[34]M. A. Green, A. H. Baillie, and H. J. Snaith, “The emergence of perovskite solar cells”, Nature Photonics, vol. 8, p. 506, (2014).
[35]H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview”, J. Mater. Res., vol. 19, p. 1924 (2004).
[36]D. Giacomo F., S. Razza, F. Matteocci, et al., “High efficiency CH3NH3PbI(3 − x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer.”, J. Power Sources, , vol. 251, p. 152, (2014).
[37]A. Pockett, G. E. Eperon, T. Peltola, H. J. Snaith, A. Walker, L. M. Peter, and P. J. Cameron, “Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy”, J. Phys. Chem. C, vol. 119, p. 3456, (2015).
[38]M. M. Mandoc, “Effect of traps on the performance of bulk heterojunction organic solar cells”, Appl. Phys. Lett., vol.91, p. 263505, (2007).
[39]V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, J. Appl. Phys., vol. 94, p. 6849, (2003).
[40]S.O. Kasap, “Optoelectronics and Photonics: Principles and Practices”, Pearson, p. 198, (2013).
[41]蔡進,” 超高效率太陽電池從愛因斯坦的光電效應談起”,物理雙月刊,廿七卷,701頁,(2005).
[42]J. L. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques”, J. Am. Chem. Soc., vol. 9, p. 1955, (2015).
[43]Clever, H. L.; Johnston, F. J., “The Solubility of Some Sparingly Soluble Lead Salts - an Evaluation of the Solubility in Water and Aqueous-Electrolyte Solution”, J. Phys. Chem., vol. 9, p. 751, (1980).
[44]K. Sun, P. C. Li, Y. J. Xia, J. J. Chang, and J. Y. Ouyang, “Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode”, Appl. Mater. Interfaces, vol. 7, p. 15314, (2015).
[45]J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells”, Adv. Mater., vol. 25, p. 3727, (2013).
[46]J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 Perovskite/PCBM planar-heterojunction hybrid solar cells”, Adv. Mater., vol. 26, p. 4107(2014).
[47]J. H. Im, I. H. Jang, N. Pellet, M. Grätzel, and N. G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells”, Nature, vol. 9, 927, (2014).
[48]Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement”, Adv. Mater., vol. 26, p. 6503 (2014).
[49]B. S. Kim, T. M. Kim, M. S. Choi, H. S. Shim, and J. J. Kim, “Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers”, Org. Electron., vol. 17, p. 102 (2015).
[50]L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, and K. Leo, “Hole-transport material variation in fully vacuum deposited perovskite solar cells”, APL Mater., vol. 2, p. 081503(2014).
[51]Q. Chen, H. P. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc., vol. 136, p.622, (2014).
[52]L. C. Chen, J. C. Chen, C. C. Chen, and C. G. Wu, “Fabrication and Properties of High-Efficiency Perovskite/PCBM Organic Solar Cells”, Nanoscale Res. Lett., vol. 10, p. 312, (2015).
[53]W. Qiu , M. Buffière, G. Brammertz, U. W. Paetzold, L. Froyen, P. Hereman, and D. Cheyns, “High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step”, Org. Electron., vol.26, p. 30, (2015).
[54]J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D. M. de Leeuw, R. A. J. Janssen, “Poly(diketopyrrolopyrrole−terthiophene) for Ambipolar Logic and Photovoltaics”, J. Am. Chem. Soc., vol. 131, p. 16616 (2009).
[55]Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. S. Liu, and Y. Yang,” Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells”, Nano Lett., vol. 14, p. 4158 (2014).
[56]P. L. Qi, Z. J. Wang, Z. T. Liu, S. F. Yang, Y. Yang, J. J. Yao, G. X. Zhang, D. Q. Zhang, “Conjugated donor–acceptor terpolymers entailing the Pechmann dye and dithienyl-diketopyrrolopyrrole as co-electron acceptors: tuning HOMO/LUMO energies and photovoltaic performances”, Polym. Chem., vol. 7, p. 3838 (2016).
[57]H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous Hysteresis in Perovskite Solar Cells”, J. Phys. Chem. Lett., vol.5, p. 1511, (2014).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔