(3.230.154.160) 您好!臺灣時間:2021/05/07 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁群翔
研究生(外文):Qun-Xiang Weng
論文名稱:超額孔隙水壓與液化阻抗之相關性探討
論文名稱(外文):Correlation of the Excess Pore Pressure and Liquefaction Resistance
指導教授:古志生古志生引用關係
指導教授(外文):Chih-Sheng Ku
學位類別:碩士
校院名稱:義守大學
系所名稱:土木與生態工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:細顆粒土壤液化阻抗水壓錐貫入試驗孔隙水壓參數
外文關鍵詞:Fine soilsLiquefaction resistancePiezocone penetration testPore pressure parameter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:528
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  土壤液化的問題在過去的四十幾年來,幾乎都集中在疏鬆的飽和砂性土壤,近年來幾次的大地震後的調查結果中,發現粉土或者粘土質細顆粒土壤之地層都會發生明顯地盤沉陷的情形,經過研究的證實,細粒料含量較高的粘土或者粉土都有可能受到地震的作用而發生液化(Liquefaction)或者軟化(Softening)的情形。
  細顆粒土壤於水壓錐貫入試驗(CPTu)的過程中,細顆粒土壤大都會激發孔隙水壓(Pw),而且具有比較低的錐尖阻抗值,所以將孔隙水壓相關的修正考慮進去細顆粒土壤的液化狀況會具有比較顯著的意義。近幾年來研究學者提出CPTu相關的細顆粒土壤的液化評估方法,並且認為是否有將孔隙水壓參數考慮進去將會影響細顆粒土壤的液化阻抗值。但是,目前對於細顆粒土壤CPTu的孔隙水壓和其液化阻抗的相關性認知有限,所以本研究主要是藉由CPTu和平行鑽探調查孔之配對資料來探討孔隙水壓與其他參數的相關性,並進一步的探討孔隙水壓參數對液化阻抗的影響。
  分析之後得到之結果為如果孔隙水壓參數越高,其液化敏感性就會越高,也就是說液化阻抗可能會比較低;土壤行為分類指數較高者,其所對應之液化阻抗就會比較低。將各參數與孔隙水壓參數進行比對,可發現孔隙水壓與液化阻抗之間的關係略呈負相關,也就是說,孔隙水壓參數較高,液化阻抗就較低。
  分別以兩種反覆阻抗比CRR與孔隙水壓參數(Bq)的關係和貫入阻抗與孔隙水壓參數(Bq)的關係綜合起來探討比較,初步判斷沒有考慮孔隙水壓參數(Bq)的反覆阻抗比CRR會比有考慮孔隙水壓參數(Bq)的來得合適。

  Soil liquefaction researches in the past forty years, almost all focused on the sandy soil. Building settlements were observed in silty or clayey ground after the disaster earthquake recently. The high fines content soils are susceptible to liquefaction or softening were confirmed in some researches.
  Soft fine soils can give high pore pressure (Pw) in the CPTu test process. Soft clay soils tend to produce low cone resistance (qc). The pore pressure played a relatively significant role in fine soils. Paired data of CPTu and parallel boring hole were conducted to investigate the correlation between pore pressure and the resistance-based parameters. The effects of pore pressure parameter (Bq) on the resistance of liquefaction were discussed in this thesis.
  The results showed that the penetrated resistances were decreased with the Bq increases. Soil behavior type index (Ic) was increased with the Bq increases. The CRR estimated method proposed by Robertson didn’t consider the effect of pore pressure parameter (Bq). The results showed that Roberson based CRR were decreased with the Bq increase. Ku and Juang proposed a Bq-related CRR assessment method. The results showed that KJ based CRR were increased with the Bq increase.

中文摘要 I
Abstract II
致謝 III
總 目 錄 IV
圖 目 錄 VI
表 目 錄 VIII
符號說明 IX
第一章 緒論 1
1.1 前言 1
1.2 研究背景及目的 4
1.3 論文內容 8
第二章 文獻回顧 9
2.1 液化及軟化之定義 9
2.1.1 影響液化的因子 14
2.1.2 土壤液化後造成的破壞 15
2.2 砂性與粘性土壤的分類 16
2.2.1 Robertson(1990)法 18
2.2.2 Jefferies and Davies(1993)法 19
2.2.3 Lunne et al.(1997)法 20
2.2.4 Robertson and Wride(1998)法 21
2.2.5 Ku et al.法(2010) 22
2.3 液化潛能評估法(簡易法) 23
2.3.1 Seed et al.簡易分析法(1971) 24
2.3.2 Olsen法(1997) 29
2.3.3 Robertson and Wride 簡易分析法 33
2.3.4 Robertson法(2009a) 39
2.4 細粒土壤液化潛能評估法 40
2.4.1 土壤指數評估法 40
第三章 研究設備介紹與背景 50
3.1 圓錐貫入試驗(CPT、CPTu)背景 50
3.2 圓錐貫入試驗試驗步驟 52
第四章 研究案例資料與方法 54
4.1 平行調查孔資料篩選 55
4.2 Bray & Sancio之細顆粒土壤液化液化評判準則 59
4.3 案例資料 60
第五章 案例分析與討論 63
5.1 Bray & Sancio之細顆粒土壤液化判斷準則 68
5.2 孔隙水壓參數與阿太堡限度 70
5.3 孔隙水壓參數與各個貫入阻抗參數 72
5.4 孔隙水壓參數與土壤行為分類指數 74
5.5 孔隙水壓參數與反覆阻抗比CRR 75
第六章 結論與建議 77
6.1 結論 77
6.2 建議 78
參考文獻 79

[1] 古志生、翁群翔、白名璇(2015),「細粒土壤孔隙水壓參數與液化阻抗相關性探討」,第十六屆大地工程學術研究討論會。
[2] 古志生、翁群翔、吳宗霖、白名璇(2015),「土耳其Kocaeli地震液化案例之液化易損度評估」,工程永續與土木防災國際研討會,pp.DI05-1-8,高雄市正修科技大學。
[3] 盧政男(2006),「新生地液化與沉陷之研究」,義守大學土木與生態工程學研究所,碩士論文,。
[4] 古志生、江健豪、高志文(2009),「CPTu土壤分類與孔隙水壓激發的特性探討」,第十三屆大地工程研討會,宜蘭,第C03-1至C03-8頁。
[5] 古志生、張佩雯(2011),「細粒土壤液軟化潛能評估法之比較」,全球暖化環境下大地防災科技之應用研究成果發表研討會論文集,台南市成功大學,pp.35-49
[6] 古志生、張佩雯(2011),「粘性土壤液化或軟化之 CPTu 評估法的可行性研究」,第十四屆大地工程研討會,桃園,。
[7] 古志生、張佩雯、陳宏嘉(2012),「適用於砂性與粘性土壤之液化潛能評估法」,全球暖化環境下大地防災科技之應用研究成果發表研討會論文集,台南市成功大學,pp.35-49,。
[8] 張佩雯、陳宏嘉、古志生(2012),「莊氏CPTu 液化評估法在粘性土壤之應用檢核」,土木與生態工程研討會,。
[9] 古志生、張佩雯(2012),「莊氏CPTu 液化評估法在粘性土壤之應用檢核」,碩士論文。
[10] Andrews, D.C.A. and Martin G.R. (2000). “Criteria for Liquefaction of Silty Soils,” Proceedings 12th WCEE, Auckland, New Zealand.
[11] Been, K., and Jefferies, M.G. (1992). “Towards systematic CPT interpretation,” Proceedings Wroth Memorial Symposium, Thomas Telford, London, 121-134.
[12] Boulanger, R. W., and Idriss, I. M. (2006). “Liquefaction susceptibility criteria for silts and clays,” Journal of Geotechnical and Geoenvironmental Engineering Vol. 132, No. 11, pp. 1413–1426.
[13] Boulanger, R. W., and Idriss, I. M. (2007). “Evaluation of cyclic softening in silts and clays,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 6, pp. 641– 652.
[14] Bray, J. D., et al., (2004). “Subsurface characterization at ground failure sites in Adapazari, Turkey,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No. 7, pp. 673–685.
[15] Bray, J. D., and Sancio, R. B. (2006). “Assessment of the liquefaction susceptibility of fine-grained soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 9, pp. 1165–1177.
[16] Chu D. B., Stewart, J.P., Boulanger, R.W. and Lin, P.S. (2008). “Cyclic Softening of Low-Plasticity Clay and Its Effect on Seismic Foundation Performance,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 11, pp. 1595–1608.
[17] Gratchev, I.B., Sassa, K., Osipov, V.I., Sokolov, V.N. (2006). “The liquefaction of clayey soils under cyclic loading,” Engineering Geology 86, 70–84.
[18] Juang, C.H., Chen, C.H., Mayne, P.W. (2008). “CPTU simplified stress-based model for evaluating soil liquefaction potential,” Soils and Foundations, Vol. 48 (6), pp. 755-770.
[19] Li, D.K., Juang, C.H., Andrus, R.D., and Camp, W.M. (2007). “Index Properties-Based Criteria for Liquefaction Susceptibility of Clayey Soils: A Critical Assessment,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 1, 110–115.
[20] Lunne, T., Robertson, P. K., and Powell, J. J. J. (1997). Cone Penetration Testing In Geotechnical Practice. Chapman & Hall.
[21] Robertson, P. K., (2009a). Discussion of “Evaluation of Cyclic Softening in Silts and Clays”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 2, pp. 306 – 307.
[22] Robertson, P.K., (2009b). “Performance based earthquake design using the CPT,” Proceedings, IS-Tokyo 2009, June 2009, Tokyo, Japan, pp. 3-20.
[23] Robertson, P. K., and Wride, C. E. (1998). “Evaluating Cyclic Liquefaction potential Using the Cone Penetration Test”, Canadian Geotechnical Journal 35, pp. 442-459.
[24] Seed, R. B., Cetin, K. O., Moss, R. E., Kammerer, A. M., Wu, J., Pestana, J. M., and Faris, A. (2003). “Recent advances in soil liquefaction engineering: a unified and consistent framework,” In Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA.
[25] Wang, W. (1979). Some Findings in Soil Liquefaction. Report Water Conservancy and Hydro-electric Power Scientific Research Institute (pp. 1-17). Beijing, China.
[26] Wijewickreme, D., and Sanin, M. V. (2007). Effect of Plasticity on the Laboratory Cyclic Shear Response of Fine-grained Soils. Fourth International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece.
[27] Youd, T. L., et al., (2001). “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, pp. 817-833.
[28] Ku, C.S. and Juang, C.H., "CPTU characteristics and liquefaction resistance of reclaimed land by dynamic compaction", 2nd International Symposium on Cone Penetration Testing, pp.121-128, Huntington Beach, CA, US, 2010.05
[29] Juang, C.H., Ku, C.S., and Chen, C.C., "Simplified model for evaluating soil liquefaction potential using CPTU", 2nd International Symposium on Cone Penetration Testing, pp.347-354, Huntington Beach, CA, US, 2010.05
[30] Boulanger, R. W., and Idriss, I. M. (2014). “CPT and SPT based liquefaction triggering procedures.” Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 134 pp.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔