跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧筱婷
研究生(外文):Hsiao-Ting Lu
論文名稱:探討阿茲海默症病人之高密度脂蛋白功能失調的化學機制
論文名稱(外文):Chemical Mechanisms of HDL Dysfunctional in Alzheimer’s Disease
指導教授:柯良胤
指導教授(外文):Liang-Yin Ke
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學檢驗生物技術學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:高密度脂蛋白
外文關鍵詞:high-density lipoprotein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高密度脂蛋白 (High-density lipoprotein; HDL) 在預防腦神經系統的退化性疾病和抗發炎反應扮演重要的角色。相反的,失去功能的HDL在阿茲海默症病人 (Alzheimer’s disease; AD) 會破壞ATP-binding cassette, sub-family A member 1 (ABCA1) 和scavenger receptor class B member 1 (SRB1) 所引起的膽固醇流出 (cholesterol efflux) 能力。為了釐清致病機轉,我們的實驗會探討HDL化學特徵以及功能。
利用液相層析質譜儀 (LC/MSE; ACQUITY UPLC, Xevo G2 QTof, WATERS®) 和Progenesis QI分析軟體定量脂質成分,結果顯示AD-HDL的溶血磷脂酰膽鹼 (lyso-phosphatidylcholines; LPC 16:0, 18:3)、神經醯氨酸 (ceramide) 和鞘氨醇 (sphinganine) 明顯較對照組減少 (分別是8.06 和 14.3倍的減少, P<0.001) 。利用利用液相層析質譜儀 (LC/MSE; ACQUITY M-class UPLC system, QTof, WATERS®) 和Progenesis QI-P分析軟體定量蛋白質成分,結果顯示載脂蛋白M (apoM), 白蛋白 (albumin) 在AD-HDL相對減少,載脂蛋白CIII (apoCIII) 在AD-HDL相對增加,因此增加了免疫細胞的細胞膜脂筏 (lipid raft) 的形成及發炎反應。利用ProteinLynx Global SERVER (PLGS) 軟體,我們鑑定出H4及H5的載脂蛋白AI (apoAI) 第136位置的蛋氨酸 (methionine) 有氧化現象 (136M oxidation)。
H5比例升高,膽固醇攜出的功能異常,蛋白質成分減少了albumin及apoM,sphinganine的含量下降。阿茲海默症病人的H5含有豐富apoCIII,會增加lipid raft聚集形成,誘導發炎性反應 。透過對阿茲海默症病人之高密度脂蛋白功能失調的化學機制或許未來可以改善阿茲海默疾病的評估指標。


HDL (high-density lipoprotein) plays an important role in preventing neurodegenerative disorders and anti-inflammatory activity. In contrast, dysfunctional HDL impairs ATP-binding cassette, sub-family A member 1 (ABCA1) and scavenger receptor class B member 1 (SRB1)-mediated cholesterol efflux pathways in Alzheimer’s disease (AD). To delineate the mechanisms, we examined the chemical properties of their HDL.

HDL isolated from AD patients (HDL-C, 51±11 mg/dL; n=30) exhibited greater mobility in agarose gel electrophoresis than HDL of healthy control subjects (HDL-C, 52±12 mg/dL; n=20), secondary to an increased representation of H5 (23.48±17.83% vs. 4.24±3.22%; P<0.001), the most electronegative subfraction of HDL identified by anion-exchange chromatography. RAW 264.7 cells incubated with 22-NBD-cholesterol were used to test the cholesterol efflux by 25、50、75、100 μg/mL HDL from AD or healthy control subjects. Result showed that the AD-HDL was significantly defected in the function of reverse cholesterol transport. By using LC/MSE (ACQUITY UPLC, Xevo G2 QTof, WATERS®) and Progenesis QI software, the lipid components were quantified to test the differences of AD-HDL and control-HDL. Results show that Lyso-phosphatidylcholines (LPC 16:0 and 18:3), ceramide and sphinganine significantly decrease in AD-HDL patients (8.06 and 14.3 fold respectively, P<0.001). By LC/MSE (ACQUITY M-class UPLC system ) and Progenesis QI-P software, we confirmed that apoM, albumin were decreased apoCIII was increased in AD-HDL, so that, lipid raft formation and inflammation were enhanced. By using ProteinLynx Global SERVER (PLGS) software, we identified apoAI 136M oxidation, was only found in H4-H5.

In conclusion, the AD-HDL is attributed in part to elevated percentage of H5, impaired function of reverse cholesterol transport and decreased content of albumin, apoM and sphinganine. ApoCIII-rich H5 from AD enhanced lipid raft formation, which is associated with augmented inflammatory.



目錄
壹、英文摘要 第四頁
貳、中文摘要 第五頁
第一章:前言 第七頁
第一節:阿茲海默症疾病介紹 第七頁
第二節:阿茲海默症疾病的病理特徵 第九頁
第三節: 阿茲海默症疾病與高密度脂蛋白 第十三頁
第四節:功能異常的高密度脂蛋白 第十五頁
第五節:高密度脂蛋白調控免疫細胞活化 第十七頁
參、實驗假說 第十八頁
肆、材料與方法 第十九頁
伍、結果 第二十七頁
陸、討論 第三十四頁
柒、結論 第三十八頁
捌、參考文獻 第三十九頁
玖、表目錄 第四十三頁
拾、圖目錄 第四十九頁
附錄 第六十九頁


參考文獻
1.Sophie Stukas, J.r.m.R., Cheryl L. Wellington, Cell Metabolism, 2014.
2.Feldstein, C.A., Effects of blood pressure changes on Alzheimer''s disease. Neuroepidemiology, 2010. 35(3): p. 202-12.
3.de Oliveira, F.F., et al., Risk factors for cognitive and functional change in one year in patients with Alzheimer''s disease dementia from Sao Paulo, Brazil. J Neurol Sci, 2015. 359(1-2): p. 127-32.
4.Waldemar, G., et al., Recommendations for the diagnosis and management of Alzheimer''s disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol, 2007. 14(1): p. e1-26.
5.Arnaiz, E. and O. Almkvist, Neuropsychological features of mild cognitive impairment and preclinical Alzheimer''s disease. Acta Neurol Scand Suppl, 2003. 179: p. 34-41.
6.Forstl, H. and A. Kurz, Clinical features of Alzheimer''s disease. Eur Arch Psychiatry Clin Neurosci, 1999. 249(6): p. 288-90.
7.Frank, E.M., Effect of Alzheimer''s disease on communication function. J S C Med Assoc, 1994. 90(9): p. 417-23.
8.Tiraboschi, P., et al., Alzheimer disease without neocortical neurofibrillary tangles: "a second look". Neurology, 2004. 62(7): p. 1141-7.
9.Shirwany, N.A., et al., The amyloid beta ion channel hypothesis of Alzheimer''s disease. Neuropsychiatr Dis Treat, 2007. 3(5): p. 597-612.
10.Hardy, J. and D. Allsop, Amyloid deposition as the central event in the aetiology of Alzheimer''s disease. Trends Pharmacol Sci, 1991. 12(10): p. 383-8.
11.Ono, K., M.M. Condron, and D.B. Teplow, Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A, 2009. 106(35): p. 14745-50.
12.Chang, Y.J. and Y.R. Chen, The coexistence of an equal amount of Alzheimer''s amyloid-beta 40 and 42 forms structurally stable and toxic oligomers through a distinct pathway. FEBS J, 2014. 281(11): p. 2674-87.
13.Zhao, L.N., et al., The toxicity of amyloid beta oligomers. Int J Mol Sci, 2012. 13(6): p. 7303-27.
14.Van Broeck, B., C. Van Broeckhoven, and S. Kumar-Singh, Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches. Neurodegener Dis, 2007. 4(5): p. 349-65.
15.Avogaro, P., et al., Distribution and concentration of apolipoprotein E in high and low density lipoproteins. Ric Clin Lab, 1983. 13(4): p. 431-6.
16.Mahley, R.W. and S.C. Rall, Jr., Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet, 2000. 1: p. 507-37.
17.Kim, J., J.M. Basak, and D.M. Holtzman, The role of apolipoprotein E in Alzheimer''s disease. Neuron, 2009. 63(3): p. 287-303.
18.Strittmatter, W.J., et al., Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A, 1993. 90(5): p. 1977-81.
19.Mahley, R.W., K.H. Weisgraber, and Y. Huang, Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer''s disease. Proc Natl Acad Sci U S A, 2006. 103(15): p. 5644-51.
20.Hernandez, F. and J. Avila, Tauopathies. Cell Mol Life Sci, 2007. 64(17): p. 2219-33.
21.Buee, L., et al., Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev, 2000. 33(1): p. 95-130.
22.Lasagna-Reeves, C.A., et al., Identification of oligomers at early stages of tau aggregation in Alzheimer''s disease. FASEB J, 2012. 26(5): p. 1946-59.
23.Cho, J.H. and G.V. Johnson, Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J Biol Chem, 2003. 278(1): p. 187-93.
24.Stamer, K., et al., Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol, 2002. 156(6): p. 1051-63.
25.Fleming, I., Signaling by the angiotensin-converting enzyme. Circ Res, 2006. 98(7): p. 887-96.
26.Lucero, D., et al., Increased cholesterol efflux capacity in metabolic syndrome: Relation with qualitative alterations in HDL and LCAT. Atherosclerosis, 2015. 242(1): p. 236-42.
27.Kontush, A. and M.J. Chapman, Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev, 2006. 58(3): p. 342-74.
28.Zheng, C. and M. Aikawa, High-density lipoproteins: from function to therapy. J Am Coll Cardiol, 2012. 60(23): p. 2380-3.
29.Liu, M., et al., Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. J Biol Chem, 2014. 289(5): p. 2801-14.
30.Norata, G.D., et al., High-density lipoproteins induce transforming growth factor-beta2 expression in endothelial cells. Circulation, 2005. 111(21): p. 2805-11.
31.Xin, C., et al., Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. J Biol Chem, 2004. 279(34): p. 35255-62.
32.Parthasarathy, S., J. Barnett, and L.G. Fong, High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta, 1990. 1044(2): p. 275-83.
33.Nofer, J.R. and M. van Eck, HDL scavenger receptor class B type I and platelet function. Curr Opin Lipidol, 2011. 22(4): p. 277-82.
34.Clark, R.W., et al., Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib. Arterioscler Thromb Vasc Biol, 2004. 24(3): p. 490-7.
35.Marin, R., et al., Lipid Raft Alterations in Aged-Associated Neuropathologies. Curr Alzheimer Res, 2016.
36.Blank, N., et al., Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1. Immunol Cell Biol, 2007. 85(5): p. 378-82.
37.Wang, S.H., et al., HDL and ApoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells. Atherosclerosis, 2012. 225(1): p. 105-14.
38.Wilhelm, A.J., et al., Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr-/-, ApoA-I-/- mice. J Biol Chem, 2010. 285(46): p. 36158-69.
39.Chapman, M.J., et al., A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J Lipid Res, 1981. 22(2): p. 339-58.
40.Zerrad-Saadi, A., et al., HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler Thromb Vasc Biol, 2009. 29(12): p. 2169-75.
41.Mahfouz, M.M. and F.A. Kummerow, High density lipoprotein can modulate the inhibitory effect of oxLDL on prostacyclin generation by rat aorta in vitro. Prostaglandins Other Lipid Mediat, 2003. 72(3-4): p. 91-114.
42.Wiesner, P., et al., Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res, 2009. 50(3): p. 574-85.
43.Sheikh, A.M., et al., Lysophosphatidylcholine increases the neurotoxicity of Alzheimer''s amyloid beta1-42 peptide: role of oligomer formation. Neuroscience, 2015. 292: p. 159-69.
44.Sheikh, A.M. and A. Nagai, Lysophosphatidylcholine modulates fibril formation of amyloid beta peptide. FEBS J, 2011. 278(4): p. 634-42.
45.Kowal, R.C., et al., Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem, 1990. 265(18): p. 10771-9.
46.Kawakami, A., et al., Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation, 2006. 114(7): p. 681-7.
47.Ooi, E.M., et al., Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond), 2008. 114(10): p. 611-24.
48.Kawakami, A. and M. Yoshida, Apolipoprotein CIII links dyslipidemia with atherosclerosis. J Atheroscler Thromb, 2009. 16(1): p. 6-11.
49.Patel, J.P. and B.N. Frey, Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder? Neural Plast, 2015. 2015: p. 708306.
50.Anderson, H.A., E.M. Hiltbold, and P.A. Roche, Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol, 2000. 1(2): p. 156-62.
51.Palmer, A.M., N. Murphy, and A. Graham, Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) A1 from human macrophage foam cells. Atherosclerosis, 2004. 173(1): p. 27-38.
52.Kimura, T., et al., Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem, 2001. 276(34): p. 31780-5.
53.Blaho, V.A., et al., HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 2015. 523(7560): p. 342-6.
54.Major, A.S., et al., Increased cholesterol efflux in apolipoprotein AI (ApoAI)-producing macrophages as a mechanism for reduced atherosclerosis in ApoAI((-/-)) mice. Arterioscler Thromb Vasc Biol, 2001. 21(11): p. 1790-5.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top