跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俊傑
研究生(外文):Jyun-Jie Wang
論文名稱:固晶膠與導線架對氮化鎵發光二極體可靠度之影響
論文名稱(外文):Reliability of GaN-Based LEDs Affected by Die-Attach Adhesive and Leadframe
指導教授:林俊良林俊良引用關係
指導教授(外文):LIN,CHUN-LIANG
口試委員:林佳民張品全
口試委員(外文):LIN,JIA-MINCHANG,PING-CHUAN
口試日期:2016-06-05
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:銀膠環氧樹脂可靠度測試
外文關鍵詞:Silver PasteEpoxyReliability Test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:4
本論文研究固晶膠、導線架如何影響藍光氮化鎵發光二極體(LED)之可靠度,比較兩種固晶層材料:銀膠與環氧樹脂,其中銀膠厚度分別為10 μm與30 μm,環氧樹脂厚度分別為5 μm、10 μm與30 μm,再各自應用在塑料及陶瓷導線架上,進行可靠度測試並比較分析結果,可靠度測試的方式有:接合強度、常溫枯化測試及冷熱衝擊。
由研究結果顯示不論使用塑料或陶瓷導線架,在相同固晶層厚度下,環氧樹脂比銀膠接合強度大。根據1008小時的常溫枯化測試,操作電流為350 mA,其結果顯示,使用塑料導線架,相同固晶層厚度10 μm下,銀膠比環氧樹脂的光輸出多12.7 % 、接面溫度減少8℃、熱阻減少5.4 ℃/W,相同固晶層厚度30 μm下,銀膠的光輸出比環氧樹脂多4.4 % 、接面溫度少4.2℃、熱阻少2.9 ℃/W,由上面比較得知相同固晶厚度下銀膠比環氧樹脂光、熱特性佳,再去比較銀膠固晶層厚度10 μm、30 μm,其結果銀膠10 μm光輸出為37.4 %、接面溫度113.6℃,熱阻51.2℃/W,在塑料導線架上具有較佳的光、熱特性;在陶瓷導線架上,相同固晶層厚度10 μm下,銀膠比環氧樹脂的光輸出增加6.5 %、接面溫度少5.5℃、熱阻少7℃/W,相同固晶層厚度30 μm下,銀膠比環氧樹脂的光輸出增加6.9 %、接面溫度少10.8℃、熱阻少9 ℃/W,由上面比較得知相同固晶厚度下銀膠比環氧樹脂光、熱特性佳,再去比較銀膠固晶層厚度10 μm、30 μm結果銀膠10 μm光輸出64.3 %、接面溫度109.1℃、熱阻 43.4℃/W在陶瓷導線架上具有較佳的光、熱特性。
根據冷熱衝擊結果顯示經過溫度循環1000次後,塑料或陶瓷導線架上,銀膠與環氧樹脂固晶層厚度30 μm光衰皆低於初始值的70 %,判定失效,發現在劇烈環境溫度下銀膠所有固晶層厚度皆會產生孔洞、環氧樹脂所有固晶層厚度皆會產生裂縫。

Reliability of GaN-Based LEDs affected by die-attach adhesive and leadframe was studied in this thesis. We have compared two die-attach adhesives, silver paste and epoxy. The thicknesses of silver paste were 10 μm and 30 μm.The thicknesses of epoxy were 5 μm, 10 μm and 30 μm. LED dies were attached on the plastic and the ceramic leadframes respectively with parameters of the die-attach adhesives described above.Evaluation items included die-shear strength, room temperature operating life test and thermal shock test.
The results showed that the use of plastic or ceramic lead frame, the shear strength of epoxy is greater than that of silver paste at the same thickness of die-attach layer. According to the results of 1008 hrs room temperature life test, operating with 350 mA, the result showed that compared with the epoxy of die attach material, silver paste achieved a 12.7 % increase in light output, with 8℃ and 5.4℃/W decreases in junction temperature and thermal resistance at the same thickness of 10 μm in die-attach layer on plastic leadframe, respectively. Compared with the epoxy of die attach material, silver paste achieved a 4.4 % increase in light output , with 4.2℃ and 2.9℃/W decreases in junction temperature and thermal resistance at the same thickness of 30 μm in die-attach leadframe, respectively. The above results show that the silver paste has the better optical and thermal properties compared with epoxy in the same thinkness of die-attach layer. The die-attach layers of silver with the thickness 10 μm and 30 μm were compared. The result shown that the silver paste, on the plastic leadframe, with thickness of 10 μm has the better optical and thermal properties, with 37.4 % of light output power and 113.6℃ of junction temperature, 51.2℃/W of thermal resistance.
Compared with the epoxy of die attach material, Silver Paste achieved a 6.5 % increase in light output, with 5.5℃and 7℃/W decreases in junction temperature and thermal resistance at the same thickness of 10 μm in die-attach layer on ceramic leadframe, respectively. Compared with the epoxy of die attach material, silver paste achieved a 6.9 % increase in light output but 10.8℃ and 9℃/W decreases in junction temperature and thermal resistance at the same thickness of 10 μm in die-attach layer on ceramic leadframe, respectively. The above results showed that the silver paste had better optical and thermal properties compared with epoxy in the same thickness of die-attach layer. Die-attach layers with the thickness 10 μm and 30 μm were compared. Silver paste with thickness of 10 μm has the better optical and thermal properties on the ceramic leadframe, with 64.3 % of light output power, 109.1℃ of junction temperature, 43.4℃/W of thermal properties.
According to the 1000 cycles of thermal shock test, the result showed that the light output power has decreased to 70 % of the initial value of silver paste and epoxy with thickness of 30 μm on plastic or ceramic leadframe. The grouth of void wobserved in silver paste and the growth of crack was found in epoxy.
中文摘要 ------------------------------------------------------------i
英文摘要 ------------------------------------------------------------iii
誌謝------------------------------------------------------------v
表目錄------------------------------------------------------------viii
圖目錄------------------------------------------------------------ix
一、 緒論------------------------------------------------------------1
1.1 前言 ------------------------------------------------------------1
1.2研究背景與動機------------------------------------------------------------2
1.2.1文獻探討------------------------------------------------------------2
1.2.2研究動機------------------------------------------------------------6
二、 發光二極體概述------------------------------------------------------------7
2.1 發光二極體簡介------------------------------------------------------------7
2.2 發光二極體原理------------------------------------------------------------7
2.3 發光二極體固晶材料------------------------------------------------------9
2.4 發光二極體封裝製程---------------------------------------------------9
2.5 基本定義------------------------------------------------------------10
2.5.1發光效率------------------------------------------------------------10
2.5.2 接面溫度------------------------------------------------------------10
2.5.3 熱阻------------------------------------------------------------11
2.6 LED可靠度規範------------------------------------------------------------12
2.6.1 LM-80流明維持測試------------------------------------------------12
2.6.2 EIAJ ED-4701/100冷熱衝擊測試--------------------------------------12
三、 實驗架構與方法-------------------------------------------------------13
3.1實驗流程------------------------------------------------------------13
3.1.1量測固晶膠厚度-------------------------------------------------------14
3.1.2封裝後的元件可靠度量測---------------------------------------------------14
3.2實驗材料及參數------------------------------------------------------------15
3.3可靠度測試機台------------------------------------------------------------22
3.3.1常溫壽命測試系統-------------------------------------------------------22
3.3.2冷熱衝擊測試------------------------------------------------------------23
3.4量測儀器------------------------------------------------------------24
3.4.1光學顯微鏡分析(OM)-------------------------------------------------24
3.4.2積分球量測系統(IS System)-------------------------------------------24
3.4.3接面溫度量測系統------------------------------------------------------25
3.4.4微米深度測定儀-------------------------------------------------------26
四、 結果與討論------------------------------------------------------------27
4.1 固晶膠厚度分析------------------------------------------------------------27
4.2接合強度分析------------------------------------------------------------30
4.3常溫壽命量測------------------------------------------------------------33
4.3.1光輸出量測結果--------------------------------------------------------33
4.3.2 接面溫度量測結果------------------------------------------------------38
4.3.3 熱阻量測結果------------------------------------------------------------41
4.4 冷熱衝擊量測結果--------------------------------------------------------43
五、 結論------------------------------------------------------------47
參 考 文 獻------------------------------------------------------------48


[1] 劉如熹, 白光發光二極體製作技術-由晶粒金屬化至封裝, 全華圖書, 2008.
[2] A. aubsch and a. et , "High-power and high-efficiency InGaN-based light emitters," in IEEE Electron Devices, 2010.
[3] A. Michiue and . a. et aI, "Recent development of nitride LEDs and LEDs," in Proc. SPIE, 2009.
[4] B. Yan, J. P. You , N. Tran, Y. Z. He and F. G., "Influence of die attach layer on thermal performance of high power light emitting diodes," IEEE Trans. Compon. Packag . Technol, vol. 33, pp. 722-727, Dec 2010.
[5] W. K. Jeung, S. H. Shin, S. Y. Hong, S. M. Choi, S. Yi, Y. B. Yoon, H. J. Kim, S. J. Lee and K. Y. Park, "High-power III-Nitride emitters for solid-statelighting," in Phys. Stat. Sol. (a) 192, 237-245, 2002.
[6] N. S. LAM, C. Y. LEE, M. Y. WAN, D. TIAN and M. LI, "High Quality & Low Thermal Resistance Eutectic Flip Chip LED Bonding," in 14th International Conference on Electronic Packaging Technology (ICEPT), 2013.
[7] F. Weng, P. Song, J. Zhang and L. Yin, "Effect of Die-attach Materials and Thickness on the Reliability of HP-LED," in 14th International Conference on Electronic Packaging Technology, 2013.
[8] P. Lu, H. Yang, H. Zheng, B. Xue, X. Wang, L. Wang, X. Yi and L. Zhao, "Influence of Die Attach Materials to Optical and Thermal Performance of High Power LEDs," in International Conference on Electronic Packaging Technology & High Density Packaging, 2012.
[9] S. U. Zhang and B. W. Lee, "Fatigue life evaluation of wire bonds in LEDpackages using numerical analysis," in Microelectron. Reliab, 2014.
[10] M. Rencz, M. Ltd, B. H. and . V. Sze, "Structure function evaluation of stacked dies," Proceedings of the IEEE SEMI THERM symposium, pp. 50-5, March 2004.
[11] 中華民國光電學會, LED 工程師基礎概念與應用, 五南出版, 2012.
[12] 李朱育, 李敏鴻, 李勝偉, 柯文政, 段生振 且 陳念波, 光電半導體元件, 五南出版.
[13] 邱晶晶, 《LED廠商之競爭策略分析-以Cree公司為例》, 國立政治大學.
[14] 郭浩中、賴芳儀、郭守義, LED原理與應用, 五南圖書出版股份有限公司, 2012.
[15] 潘錫明, “認識發光二極體,” 科學發展, 編號 435, 3 2009.
[16] 劉心怡, 洪雅慧, 何宗漢, 伍玉真 且 鄧希哲, “銀膠種類及厚度對構裝後晶片可靠度影響,” 工程科技與教育學刊, 第 冊7, 編號 4, p. 546~559, 10 99.
[17] 材料世界網, “高導熱導電銀膠於LED應用的技術發展趨勢,” 20 9 2012. [線上]. Available: http://www.materialsnet.com.tw/DocView.aspx?id=10614.
[18] LEDinside, “淺談LED環氧樹脂(Epoxy)封裝技術,” LEDinside, 1 12 2008. [線上]. Available: http://www.ledinside.com.tw/knowledge/20081201-8674.html.
[19] 材料世界網, “發光二極體(LED)構裝材料技術介紹與發展趨勢,” 22 6 2012. [線上]. Available: http://www.materialsnet.com.tw/DocView.aspx?id=10418.
[20] 維基百科, “结溫,” [線上]. Available: https://wikipedia.kfd.me/zh-cn/%E7%BB%93%E6%B8%A9.
[21] LEDinside, “淺談影響LED元件熱阻的因素,” 24 2 2009. [線上]. Available: http://www.ledinside.com.tw/knowledge/20090224-9298.html.
[22] L. &. Share, “如何用LM80和TM21規範推估LED的壽命,” [線上]. Available: http://hy-chou.blogspot.tw/2012/11/lm80tm21led.html.
[23] 林政憲, “高功率LED溫定度控制系統概述,” 電子檢測與品管, pp. 12-19, 1 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top