跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠宇
研究生(外文):CHEN,KUAN-YU
論文名稱:一種抓取微米等級顆粒之高效率光誘發介電泳晶片
論文名稱(外文):Study of high efficiency light-induced dielectrophoresis chip for sorting the micron-level particles
指導教授:吳宏偉
指導教授(外文):WU,HUNG-WEI
口試委員:陳芃婷程榮祥
口試委員(外文):CHEN,PENG-TINGCHENG,RUNG-SHIANG
口試日期:2016-06-27
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:52
中文關鍵詞:光誘發介電泳矽薄膜生醫晶片
外文關鍵詞:Light-induced DielectrophoresisSilicon thin filmBiochip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用感應耦合式電漿化學氣相沉積系統,製作出高效率的光誘發介電泳晶片。光誘發介電泳晶片係由兩片Indium Tin Oxide導電玻璃與a-si非晶矽感光層所組成。此晶片經由通過可見光的投射到矽薄膜上,可有效的篩選或捕抓生物顆粒或細胞。而具有高分離或捕捉效率的生物晶片,依賴的是非晶矽薄膜的沉積品質,因此,薄膜沉積技術至關重要。本研究使用感應耦合式電漿化學氣相沉積系統,比較電漿輔助化學氣相沈積系統沉積出不同品質的非晶矽薄膜,比較不同薄膜所得到的篩選率。再利用篩選率最好的矽薄膜進行連續分選生物顆粒,模擬循環腫瘤細胞之應用。
This article describes a high-efficiency light-induced dielectrophoresis biochip containing a thin film prepared through inductively coupled plasma chemical vapor deposition (ICPCVD). The biochip comprises two ITO glass substrates and a photoconductive amorphous silicon thin film. The biochip can effectively sort particular particles (or cells) by projecting visible light onto the surface of the silicon thin film. The sorting efficiency of biochips is highly associated with the quality of the deposited amorphous silicon thin films; therefore, the choice of deposition technique is extremely critical. However, no study has examined the silicon thin film. Hence, the current study thoroughly compared the efficiency of the biochip when films produced through plasma-enhanced chemical vapor deposition and ICPCVD are used. Using high-efficiency biochip to simulate circulating tumor cells.
中文摘要 2
Abstract 3
Acknowledgements 4
Contents 5
Table Contents 7
Chapter 1 Transmission Line Theory 12
1.1 Electrokinetic 14
1.1.1 Electrophoresis 14
1.1.2 Capillary electrophoresis 16
1.1.3 Dielectrophoresis 17
1.1.4 AC electroosmotic flow 20
1.2 Paper review 21
1.2.1 Physical properties 22
1.2.2 Biological properties 26
Chapter 2 Process of the LIDEP chip 29
2.1 Thin Film Deposition Processes and mechanism 29
2.1.1 Inductively coupled plasma chemical vapor deposition (ICPCVD) system 29
2.1.2 Chemical Vapor Deposition 30
2.1.3 Mean Free Path 31
2.1.4 Substrate cleaning process 32
2.1.5 Photoconductive film process 33
2.1.6 Chip process 33
2.1.7 Design procedure of the flow 35
2.2 System configuration 37
2.2.1 Experiment apparatus and analysis Equipment 38
2.2.2 Sample preparation 39
2.3 Design flow 40
Chapter 3 High Efficiency Light-Induced Dielectrophoresis Biochip Prepared Using CVD Techniques 41
3.1 Motivation 41
3.2 Experiment 42
3.3 Results 50
3.4 Conclusion 51
4.1 Parameters on biochip 52
4.2 Manipulation and discussion 53
4.3 Continuous flow separation of particles 55
Chapter 5 Conclusion and future work 59
Reference 60


[1]M. J. Fulwyler, “Electronic separation of biological cells by volume,” Science, vol. 150, no. 3698, pp. 910–911, Nov. 1965.
[2]P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, no. 7049, pp. 370-372, Jul. 2005.
[3]Nancy C. Stellwagen, “Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution,” Electrophoresis, pp. 188–195, Jun. 2009.
[4]D. J. Bennett, B. Khusid, Conrad D. James, Paul C. Galambos, Murat Okandan, David Jacqmin and Andreas Acrivos, “Combined field-induced dielectrophoresis and phase separation for manipulating particles in microfluidics,” Appl. Phys. Lett. vol. 83, pp. 4866–4868, Dec. 2003.
[5]P. R. C. Gascoyne and Jody Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis, vol. 23, pp. 1973–1983, July 2002.
[6]T. Laurell, Filip Peterssona and Andreas Nilssona, "Chip integrated strategies for acoustic separation and manipulation of cells and particles," Chemical Society Reviews, vol. 36, no. 73, pp. 492–506, Rev. 2007.
[7]N. Pammea, "Magnetism and microfluidics," Lab on a Chip, vol. 1, no. 6, pp. 24–38, Nov. 2006.
[8]Dino Di Carlo, "Inertial microfluidics," Lab on a Chip, vol. 21, no. 9, pp. 3038–3046, Sep. 2009.
[9]J Sun, C Liu, M Li, JWang, Y Xianyu, G Huand X Jiang, “Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels,” Biomicrofluidics, vol. 7, no. 1, pp. 1–10, Jan. 2013.
[10]H Moncada-Hernández, B H. Lapizco-Encinas, “Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach,” Analytical and Bioanalytical Chemistry, Vol. 396, no. 5, pp. 1805–1816, Mar. 2010.
[11]S Patel, D Showers, P Vedantam, T R Tzeng, S Qian and XC Xuan, “Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis,” Biomicrofluidics, Vol. 6, no. 3, pp. 034102, Jul. 2012.
[12]H Hwang, D-H Lee, W Choi and J-K Park, “Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force,” Biomicrofluidics, Vol. 3, no.1, pp.014103, Feb. 2009.
[13]V Plaks, C.D. Koopman, Z Werb, “Circulating Tumor Cells,” Science, Vol. 341,no .6151, pp. 1186–1188, Sep. 2013.
[14]O Villard, D Filisetti, F. Roch-Deries, J Garweg, J Flament and E Candolfi, “Comparison of Enzyme-Linked Immunosorbent Assay, Immunoblotting, and PCR for Diagnosis of Toxoplasmic Chorioretinitis,” J Clin Microbiol, vol.41, no.8, pp3537–3541, Aug. 2003.
[15]T. R. Ashworth, “A case of cancer in which cells similar to those in the tumours were seen in the blood after death,” The Medical Journal of Australia, vol. 14, pp. 146–147, 1869.
[16]Paget S ,The distribution of secondary growths in cancer of the breast. Lancet 1:571–573, 1889.
[17]Zheng S, Lin HK, Lu B, Williams A, Datar R, Cote RJ, Tai YC, “3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood,” Biomedical Microdevices, vol 13, pp 203–213, Oct 2010.
[18]Loutherback K, D'Silva J, Liu L, Wu A, Austin RH, Sturm JC, “Deterministic separation of cancer cells from blood at 10 mL/min,” AIP Advances, Vol. 2 ,no. 4, pp. 042107, Oct. 2012.
[19]Kuntaegowdanahalli SS, Bhagat AA, Kumar G, Papautsky , “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab Chip, vol. 9, no. 20, pp. 2973–2980, Jul. 2009.
[20]B. Yafouz,N. A. Kadri and F. Ibrahim, “Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes,” Sensors, Vol.14, no.4, pp. 6356–6369, Nov. 2013.
[21]Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Lam RH, Macoska JA, Merajver SD, Fu J, “Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies,” ACS Nano, vol.7, no. 1, pp. 566–575, Nov. 2012.
[22]Chen KC, Pan YC, Chen CL, Lin CH, Huang CS, Wo AM, “Enumeration and viability of rare cells in a microfluidic disk via positive selection approach,” Anal Biochem, Vol. 429, no. 2, pp. 116–123, Oct. 2012.
[23]B. P. Casavanta, R. Moshera, J.W. Warricka, L. J. Maccouxa, S. M.F. Berrya, J.T. Beckerb, V Chena, J. M. Langc, D. G. McNeelc, D. J. Beebe, “A negative selection methodology using a microfluidic platform for the isolation and enumeration of circulating tumor cells,” Methods, Vol. 64, no. 2, pp. 137–143, Dec. 2013 .
[24]B. Cetin, Y. Kang, Z. Wu and D. Li, “Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes,” Electrophoresis, vol. 30, no. 5, pp. 766–772, Mar. 2009.
[25]P. Y. Chiou and M. C. Wu, “Manipulating nanoparticles and macromolecules with light patterned microfluidic flow,” IEEE-NEMS 2008 (3rd), pp.1204 – 1207, Jan. 2008.
[26]H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neal and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab Chip, vol. 10, no. 2, pp. 165–172, Jan. 2010.
[27]S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsun, C. L. Yang, C. C. Tseng and G. Bin Lee, “High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.” Lab Chip, vol. 13, no. 7, pp. 1371–1383, Jan. 2013.
[28]H. Hwang and J. K. Park, “Optoelectrofluidic platforms for chemistry and biology,” Lab Chip, vol. 11, no. 1, pp. 33–47, Jan. 2011.
[29]Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron., vol. 24, no. 4, pp. 572–578, Dec. 2008.
[30]H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields.” Appl. Phys. Lett. vol. 22, no. 27, pp. 869–871, Jul. 1951.
[31]H. Xiao, Introduction to Semiconductor Manufacturing Technology, 2nd Edition, Prentice-Hall, Inc., 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top