(3.227.235.183) 您好!臺灣時間:2021/04/13 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴瑛惠
研究生(外文):LAI, YING-HUEI
論文名稱:模擬18吋晶圓廠中物料傳輸帶 之改善系統瓶頸研究
論文名稱(外文):A Simulation Model for Improvement the Bottleneck of Shortcut-conveyor Based AMHS in 450mm Semiconductor Fabs
指導教授:王嘉男王嘉男引用關係
指導教授(外文):WANG, CHIA-NAN
口試委員:王嘉男薛明憲李俊佳
口試委員(外文):WANG, CHIA-NANHsueh, Ming-HsienLee, Chun-Chia
口試日期:2016-06-07
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:450 mm晶圓廠自動化物料搬運系統傳輸帶速度捷徑
外文關鍵詞:450mm Semiconductor FabsAMHSconveyor speedshortcut
相關次數:
  • 被引用被引用:0
  • 點閱點閱:432
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究鑑於450mm晶圓廠時代的來臨,晶舟重量的增加,使得自動化物料搬運系統(AMHS)的相當重要。過去幾年當中,有學者指出AMHS的實施與操作已被認定為影響300mm和450mm晶圓廠過渡期關鍵因素之一。由於連續型搬運系統可以提供晶圓廠AMHS更好的運輸能力,致使成為下一個的晶圓時代的潛力運輸工具。為了提升晶圓廠的整體績效表現,降低批量的搬運時間,本研究找出系統的瓶頸,藉由加快瓶頸迴路的速度,並且配置一般批量的捷徑,調度規則是使用Wang et al. (2016)所提出的啟發式的搶先調度規則(Heuristic Preemptive Dispatching Method, HPDB),使緊急批量相較於一般批量擁有較高的處理優先權,利用模擬所欲模擬之生產情境,之後與Wang et al. (2016)的HPDB模型比較。最佳的模擬結果為瓶頸速度2英尺/秒的,3條一般批量捷徑的配置下,緊急批量平均搬運時間減少6.57%,一般批量平均搬運時間減少10.53%。
According to the weight of 450mm wafer cassette increases, the weight of a wafer cassette increases. AMHS (automatic material handling system) becomes more and more important. In the past years, some researcher has identified the implementation and operation of an AMHS as one of the critical factors that will affect the transition to 300 Prime and 450mm wafer fabs. The continuous handling system provides 450mm fab AMHS with a better transport capacity, and becomes potential transport of the next generation. In order to improve the overall performance of fab and reduce transport time of wafer, this study concentrated on bottleneck loop. The model provides an effective way by accelerating the speed of bottleneck loop, and setting the configuration of lots shortcut. The dispatching rules using heuristic preemptive scheduling rules (HPDB) which was proposed by Wang et al. Experimental results demonstrate that that in the best case where the number of shortcuts is 3 and the speed of bottleneck is 2 ft/s. Comparison with HPDB, the method reduces the average delivery time by 6.57%, for hot lots and 10.53% for normal lots.
目錄
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
中英專有名詞對照表 IX
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 6
1-3 研究範圍與限制 7
1-4 研究流程 8
1-5 論文架構 9
第二章 文獻探討 10
2-1 半導體晶圓廠AMHS模擬系統之發展 10
2-2 自動化物料搬運系統 11
2-2-1 設施規劃問題 11
2-2-2 資源配置問題 12
2-2-3 績效分析問題 13
2-2-4 搬運車管理問題 13
2-3 傳輸帶相關文獻 14
2-3-1 傳輸帶搬運與車輛搬運的兩者比較文獻 16
2-4文章小節 17
第三章 研究方法 18
3-1 模擬工具 18
3-1-1 模擬軟體 18
3-1-2 Flexsim模擬系統步驟 20
3-2 OMNI-DIRECTIONAL™ Sorter 21
3-3 傳輸帶整體規則 23
3-3-1 瓶頸分析 28
3-3 實驗設計 29
3-4 模擬環境 31
3-5 績效指標 33
第四章 模擬結果與分析 35
4-1 模擬結果 35
4-2 統計驗證 37
4-3 實驗分析總結 38
第五章 結論 43
5-1 結論 43
5-2 未來建議 44
參考文獻 45
附錄一 各迴路的負載比例計算 52
附錄二 批量搬運時間 57

參考文獻
一、中文文獻
王嘉男與許峰源,2000,分析Conveyor與OHT在生產傳輸上的差異性-以450mm晶圓廠為例,工程科技與教育學刊,第七卷,第三期,421-436頁。
沈正花與陳志強,2011,基於仿真的半導體自動物料搬運系統調度優化,工業工程與管理,第16卷,第一期,85-90頁。
周炳海、陳錦祥、趙猛(2015),基於晶圓優先級的連續型Inter-bay搬運系统性能分析,浙江大學學報(工學版),第49卷,第二期,296-302頁。
張婷珺,2006,十二吋晶圓廠自動物料搬運系統分段式迴圈設計之探討與分析,國立成功大學製造工程研究所碩士論文。
張逸輝,2004,晶圓廠模擬模式之建立與分析,國立成功大學製造工程研究所碩士論文。
薪威科技有限公司,2014,工業4.0工廠實務系統流程模擬。
顏豪君,2006,快速評估12吋晶圓廠AMHS的模擬方法,國立交通大學工業工程與管理研究所碩士論文。
二、英文文獻
Angrawal, G. K., and Heragu, S. S., (2006). A survey on automated material handling systems in 300-mm semiconductor fabs, IEEE Transactions on Semiconductor Manufacturing, 19(1), 112-119.
Brain, M. D., and Lin, P., (2007). Impact of speed on the performance of vehicle-free transport, Proceedings of the 2007 International Symposium on Semiconductor Manufacturing, 1-3.

Campbell, E., and Ammenheuser, J., (2000). 300mm Factory layout and material handling modeling: Phase Ⅱ report, International SEMATECH, technology transfer, #99113848B-ENG.
DeJong, C. D., and Wu, S. P., (2002). Simulating the transport and scheduling of priority lots in semiconductor factories, Proceedings of the 2002 Winter Simulation Conference, 1387-1391.
Feindel, D., and Kaempf, U., (2000). The case for continuous flow transport of wafer carriers, Semiconductor International, 23, 299-308.
Hsieh, C. H., Cho, C., Yang, T., and Chang, T. J., (2012). Simulation study for a proposed segmented automated material handling system design for 300-mm semiconductor fabs, Simulation Modeling Practice and Theory, 29, 18-31.
Huang, C. J., Chang, K. H., Lin, J. T., (2012). Optimal vehicle allocation for an automated materials handling system using simulation optimization, International Journal of Production Research, 50(20), 5734-5746.
Intralox, (2014). OMNI-DIRECTIONAL™ SORTER-MHI.
Jimenez, J. A., Bell, M., Adikaram, C., Davila, V., Wright, R., and Grosser, A., (2010). AMHS factors enabling small wafer lot manufacturing in semiconductor wafer fabs, Proceedings of the 2010 Winter Simulation Conference, IEEE, 2575-2585.
Johnson, A., Carlo, H. J., Jimenez, J. A., Nazzal, D., and Lasrado, V. (2009). A greedy heuristic for locating crossovers in conveyor-based AMHS in wafer fabs, Proceedings of the 2009 Winter Simulation Conference, IEEE, 1667-1676.

Liang, S. K., and Wang, C. N., (2005). Modularized simulation for lot delivery time forecast in automatic material handling systems of 300 mm semiconductor manufacturing, International Journal of Advanced Manufacturing Technology, 26(5), 645-652.
Liao, D. Y., and Wang, C. N., (2004). Neural-network-based delivery time estimates for prioritized 300mm automatic material handling operations, IEEE Transactions Semiconductor Manufacturing, 17(3), 324-332.
Liao, D. Y., and Wang, C. N., (2006). Differentiated preemptive dispatching for Automatic materials handling services in 300 mm semiconductor foundry, International Journal of Advanced Manufacturing Technology, 29, 890-896.
Lin, J. T., Wang, F. K., Wu, C. K., (2003). Connecting transport AMHS in a wafer fab, International Journal of Production Research, 41(3), 529-544.
Lin, J. T., and Huang, C. W., (2014). A simulation-based optimization approach for a semiconductor photobay with automated material handling system, Simulation Modelling Practice and Theory, 46, 76-100.
Lin, J. T., Wu, C. H. and Huang, C. W., (2013). Dynamic vehicle allocation control of automated material handling system in semiconductor manufacturing, Computers and Operations Research, 40, 2329-2339.
Miller, L., Bradley, A., Tish, A., Jin, T., Jimenez, J. A., and Wright, R., (2011). Simulating conveyor-based AMHS layout configurations in small wafer lot manufacturing environments, Proceedings of the 2011 Winter Simulation Conference, 1944-1952.

Moore, G. E., (1998). Cramming more components onto integrated circuits, Proceedings of IEEE, 86, 82-85.
Nazzal, D., and El-Nashar, A., (2007). Survey of research in modeling conveyor-based automated material handling systems in wafer fabs, Proceedings of the 2007 Winter Simulation Conference, 1781-1788.
Nazzal, D., and McGinnis, L. F., (2005).Queuing models of vehicle-based automated material handling systems in semiconductor fabs, Proceedings Winter Simulating Conference, 2464-2471.
Nazzal, D., and McGinnis, L. F., (2006). An analytic model of vehicle-based automated material handling systems in semiconductor fabs, Proceedings Winter Simulation Conference, 1871-1879.
Nazzal, D., Carlo, H. J., Johnson, A., and Jimenez, J. A., (2008). An analytical model for conveyor based AMHS in semiconductor wafer fabs, Proceedings Winter Simulation Conference, 2148-2155.
Nazzal, D., Jimenez, J. A., Carlo, H. J., Johnson, A. L., Lasrado, V., (2010). An analytical model for conveyor-based material handling system with crossovers in semiconductor wafer fabs, IEEE Transactions Semiconductor Manufacturing, 23(3), 468-476.
Paprotny, I., Shiau, J. Y., Huh, Y., and Mackulak, G., (2000). Simulation based comparison of semiconductor AMHS alternatives: continuous flow vs. overhead monorail, Proceedings of 2000 Winter Simulation Conference, 1333-1338.
Pettinato, J.S., and D. Pillai. 2005. Technology decisions to minimize 450-mm wafer size transition risk, IEEE Transactions on Semiconductor Manufacturing, 18(4), 501-509.
Pillai, D., Quinn, T., Kryder, K., and Charlson, D., (1999). Integration of 300mm fab layouts and material handling automation, IEEE/CHMT Ninth International Electronic Manufacturing Technology Symposium, 23-26.
Schmidt, L. C., and Jackman, J., (2000). Modeling recirculating conveyors with blocking, European Journal of Operational Research, 124, 422-436.
Schulz, M., Stanley, T. D., and Renelt, B., (2000). Simulation based decision support for future 300mm automated material handling, Proceedings of the 2000 winter Simulation Conference, 1518-1522.
Temponi, C., Jimenez, J. A., and Khan, J., (2009). Preliminaries on AMHS: Lessons learned, Proceedings of the 2009 International Conference on Industrial Engineering and Systems Management, 408-419.
Ting, J. H., and Tanchoco, J. M. A., (2001). Optimal bidirectional spine layout for overhead material handling systems, IEEE Transactions Semiconductor Manufacturing, 14(1), 57-64.
Tyan, J. C., (2004). Multiple response optimization in a fully automated FAB:an Integrated Tool and Vehicle Dispatching Strategy, Computers and Industrial Engineering, 46, 121-139.
Wang, C. N., (2014). The improvement of lot delivery time in 450 mm semiconductor manufacturing, Applied mathematics and Information Sciences, 2983-2990.
Wang, C. N., and Chen, L. C., (2009). The heuristic preemptive dispatching method of material transportation system in 300mm semiconductor fabrication, Journal of Intelligent Manufacturing, 23(5), 2047-2056.

Wang, C. N., and Liao, D.Y., (2002). Prioritized automatic material handling services in 300mm foundry manufacturing, IEEE Semiconductor Manufacturing Technology Workshop, 109-114.
Wang, C. N., Lee, Y. H., Hsu, H. P., and Nguyen, D. H., (2016). The heuristic preemptive dispatching method for convey-based automated material handling system of 450mm wafer fabrication, Computers and Industrial Engineering, 96, 52-60.
Wang, F. K., and Lin, J. T., (2004). Performance evaluation of an automated material handling system for a wafer fab, Robotics and Computer-Integrated Manufacturing, 20, 91-100.
Wei, Q., Jie, Z., and Sun, Y. B., (2013). Multiple-objective scheduling for Inter-bay AMHS by using genetic-programming-based composite dispatching rules generator, Computers Industry, 64(6), 694-707.
Zhu, X. M., Zhang, R. T., Chu, F. H., He, Z. X., and Li, J. Y., (2014). A Flexsim-based optimization for the operation process of cold-chain logistics distribution center, Journal of Applied Research and Technology, 12, 270-278.
Zimmerhackl, O., Rothe, J., Schmidt, K., and L. Marshall, L., (2007). The Effects of Small Lot Manufacturing on AMHS Operation and Equipment Front-End Design, Proceedings of the International Symposium on Semiconductor Manufacturing, 1-5.
三、網頁文獻
G450C, About G450C. Retrieved April 2016 from http://www.g450c.org/about.aspx
SEMI, (2013). 450mm and EUV: Critical challenges facing the semiconductor industry. Retrieved from http://www.semi.org/en/node/45586
SEMI, (2015). Taiwan semiconductor industry to maintain its growth.
Retrieved from http://www.semi.org/en/node/56691
SUMCO. Retrieved March 2016 from http://www.sumcosi.com/english/products/next_generation/large_diameter.html
International SEMATECH Manufacturing Initiative, (2011). Next-generation factory and 300mm, Accessed June 6. Retrieved from
http://ismi.sematech.org/research/ngf/index.htm

電子全文 電子全文(網際網路公開日期:20211231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔