【1】P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature, 407, (2000) 496.
【2】V. D. Neff, “Electrochemical oxidation and reduction of thin films of prussian blue”, Journal of the Electrochemical Society, 125, (1978) 886.
【3】林振華, 林振富, “充電式鋰離子電池材料與應用”, 全華科技圖書股份有限公司, (2001)。
【4】J. Hajek, French Patent 8, (1949) 10.
【5】B. Kang and G. Ceder, “Battery materials for ultrafast charging and discharging”, Nature, 458, (2009) 190.
【6】孫清華, “可充電電池技術大全“, 全華科技圖書出版社, (2001)。
【7】黃可龍, 王兆翔, 劉素琴, “鋰離子電池原理與技術“, 五南圖書圖書出版公司, (2010)。
【8】J.M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414, (2001) 359.
【9】洪為民, “鋰離子二次電池原理、特性與應用”, 工業材料, 7, (1996) 58。
【10】鄭承良, “鋰離子在含非溶劑之PAN系膠態高分子電解質中傳導行為之研究”, 清華大學化學工程與材料工程系碩士論文, (2008)。
【11】林雅屏, “電化學陽極沉積奈米結構氧化鎳電極應用於鋰離子二次電池負極材料”, 國立高雄應用科技大學化學工程與材料工程系碩士論文, (2010)。【12】M. Winter, J.O. Besenhard, M.E. Spahr, and P. Novak, “Insertion electrode materials for rechargeable lithium batteries”, Advanced Materials, 10, (1998) 725.
【13】呂學隆, “鋰電池正極材料技術與產業趨勢(一)-總體市場供需與發展”, 電子材料智庫, (2011)。
【14】王憲程, 呂宗昕, “奈米科技與鋰離子二次電池電極材料”, 國立臺灣大學「台大工程」學刊 第八十四期, (2002)。
【15】張博富, “摻雜金屬鑭改質 LiFePO4/C 鋰離子電池陰極材料” ,國立中央大學化學工程與材料工程研究所碩士論文, (2008)。【16】S.H. Yang, L. Croguennec, C. Delmas, E.C. Nelson, and M.A. O'Keefe, “Atomic resolution of lithium ions in LiCoO2”, Nature materials, 2, (2003) 464.
【17】蔡宜蓁, “修飾Pechini法合成LiNi0.8Co0.2O2電極材料之晶粒大小效應研究”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2008)。【18】陳信安, “膨脹介向碳微球與直接碳化金屬有機配位聚合物作為鋰離子電池陽極之研究”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2015)。【19】M. Thackeray, “Lithium-ion batteries: An unexpected conductor”, Nature materials, 1, (2002) 81.
【20】張仲逸, “嵌入式鋰電池正極材料介紹”, 工業材料, 180期, (2001) 110。【21】P. Arora and R.E. White, “Capacity fade mechanisms and side reactions in lithium-ion batteries”, Journal of Electrochemical Society, 145, (1998) 3647.
【22】陳運昇, “應用溶膠-凝膠法製備鋰電池奈米鋰鈷氧化物(LiCoO2)粉末及其特性之研究”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2007)。【23】A.N. Dey, “Electrochemical alloying of lithium in organic electrolytes”, Journal of Electrochemical Society, 118, (1971) 1547.
【24】費定國, 李日琪, “鋰離子電池陽極材料開發”, 工業材料, 165期, (2002) 152。
【25】顏榮賢,“ 鋰離子二次電池錫氧化物陽極材料製程及性質研究”, 國立成功大學材料科學及工程學系碩士論文, (2000)。【26】M.S. Park, Y.J. Lee, S. Rajendran, M.S. Song, H.S. Kim, and J.Y. Lee, “Electrochemical properties of Si/Ni alloy–graphite composite as an anode material for Li-ion batteries”, Electrochimica Acta, 50, (2005) 5561.
【27】P. Zuo, G. Yin, X. Hao, Z. Yang, Y. Ma, and Z. Gao, “ Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode”, Materials Chemistry and Physics, 104, 444, (2007).
【28】劉茂煌, “非碳鋰電池負極材料”, 工業材料, 157期, (2000)133。【29】T. Shodai, Y. Sakurai and T. Suzuki, “Reaction mechanisms of Li2.6Co0.4N anode material”, Solid State Ionics, 122, (1999) 85.
【30】陳翁釧, 謝登存, “鋰離子電池隔離膜(Separator)材料應用介紹”, 工業材料, 215期, (2004) 99。
【31】許雪萍, 陳金銘, 施得旭, 林月微, 姚慶意, “鋰離子電池材料技術”, 工業材料, 126期, (1997) 104。
【32】J. F. Keggin, and F. D. Miles, “Structures and formulae of the prussian blues and related compounds”, Nature, 137, (1936) 577.
【33】http://www.chemexplore.net/mixed-valent.htm
【34】K. Itaya, T. Ataka, and S. Toshima, “Electrochemical preparation of a prussian blue analog: iron-ruthenium cyanide”, Journal of the American chemical society, 104, (1982) 3751.
【35】M.S. Wu, L.J. Lyu, and J.H. Syu, “Copper and nickel hexacyanoferrate nanostructures with graphene coated stainless steel sheets for electrochemical supercapacitors”, Journal of Power Sources, 297, (2015) 75.
【36】陳玟吟, 黃贛麟, “奈米碳球衍生物材料應用簡介”, 工業材料, 330期, (2014) 182。
【37】呂理均, “電泳動沉積法製備鐵氰化鎳與鐵氰化銅電極及其電化學特性研究”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2014)。
【38】許漢良, “奈米碳管電極表面修飾鎳之電化學儲氫特性研究”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2009)。【39】L. Chen, J. Bai, C. Wang, Y. Pan, M. Scheer, and X. You, “One-step solid-state thermolysis of a metal-organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes”, Chemical Communications, 13, (2008) 1581.
【40】H. Hu, B. Zhao, M.E. Itkis, and R.C. Haddon, “Nitric acid purification of single-walled carbon nanotubes,” Journal of Physical Chemistry B, 107, (2008) 13838.
【41】劉禹輝, “電泳沉積氧化鋅鍍層及其性質”,國立成功大學材料科學與工程學系碩士論文, (2004)。【42】C. D. Wessells, R. A. Huggins, and Y. Cu, “Copper hexacyanoferrate battery electrodes with long cycle life and high power”, Nature Communications , 2, (2011) 550.
【43】Z. Jia, B. Wang, and Y. Wang, “Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries”, Materials Chemistry and Physics, 149, (2015) 601.
【44】M. Omarova, A. Koishybay, N. Yesibolatia, A. Mentbayeva, N. Umirov, K. Ismailov, D. Adairb, M. R. Babaa, I. Kurmanbayeva, and Z. Bakenov, “Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries”, Electrochimica Acta, 184, (2015) 58.
【45】M.S. Wu and Z.Z. Ceng, “Bamboo-like nitrogen-doped carbon nanotubes formed by direct pyrolysis of Prussian blue analogue as a counter electrode material for dye-sensitized solar cells”, Electrochimica Acta, 191, (2016) 895.
【46】S. Hao, B. Zhang, S. Ball, M. Copley, Z. Xu, M. Srinivasan, K. Zhou, S. Mhaisalkar, and Y. Huang, “Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries”, Journal of Power Sources, 294, (2015) 112.
【47】G.H. Zhang, Y.J. Chen, B.H. Qu, L.L. Hu, L. Mei, D.N. Lei, Q. Li, L.B. Chen, Q.H. Li , and T.H. Wang, “Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries”, Electrochimica Acta, 80, (2012) 140.
【48】Y.S. Yun, H-J Jin , “Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries ”, Materials Letters, 108, (2013) 311.
【49】K. Wenelska, A. Ottmann, P. Schneider, E. Thauer, R. Klingeler, E. Mijowska, “Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries”, Energy, 130, (2016) 100.
【50】W. Guo, X. Li, J.N. Xu, H. K. Liu, J.N Ma, S. X. Dou, “Growth of Highly Nitrogen-Doped Amorphous Carbon for Lithium-ion Battery Anode”, Electrochimica Acta, 188, (2016) 414.
【51】張信緯, “氧化鋅/氧化鎳奈米柱狀陣列電極之製備及其在鋰離子電池的應用”, 高雄應用科技大學化學工程與材料工程系碩士論文, (2012)。【52】C.L. Xiao, S.C. Zhang, S.B. Wang, Y.L. Xing, R. Lin, X. Wei, and W.X Wang, “ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery ”, Electrochimica Acta, 189, (2016) 245.
【53】L. He, X.Z. Liao, K. Yang, Y.S. He, W. Wen, and Z.F. Ma, “Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries”, Electrochimica Acta, 56, (2011) 1213.
【54】X.Y. Yao, J.H. Kong, C.Y. Zhao, D Zhou, R Zhou, and X.H. Lu, “Zinc ferrite nanorods coated with polydopamine-derived carbon for high-rate lithium ion batteries”, Electrochimica Acta, 146, (2014) 464.
【55】X.B. Zhong, Z.Z. Yang, H.Y. Wang, L. Lu, B. Jin, M. Zha, and Q.C. Jiang, “A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries”, Journal of Power Sources, 306, (2016) 718.
【56】S.H. Bae, K. Karthikeyan, Y.S. Lee, and I.K. Oh, “Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery”, Carbon, 64, (2013) 527.