跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘斌峰
研究生(外文):CHUNG,BIN-FONG
論文名稱:簡單結構之色溫線性可調近白光有機發光二極體
論文名稱(外文):Linear Color-tunable Near White Organic Light-emitting Diode with a Simple Structure
指導教授:楊素華楊素華引用關係
指導教授(外文):YANG,SU-HUA
口試委員:楊素華江柏叡楊證富張美濙
口試委員(外文):YANG,SU-HUACHIANG,PO-JUIYANG,CHENG-FUCHANG,MEI-YING
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:126
中文關鍵詞:白光有機發光二極體可調色螢光磷光
外文關鍵詞:WOLEDTunabilityFluorescencePhosphorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究中主要在探討簡單結構的線性可調色近白光有機發光二極體的特性與物理機制,首先使用NPB、Bphen作為電洞傳輸層與電子傳輸層,LiF作為電子注入層,並選擇CBP作為主體材料。在本研究中對元件之螢、磷發光層進行優化,以獲得最佳的發光強度,藉此提升元件色溫可調範圍。並在螢、磷發光層中間加入BCP、CBP作為載子調制層,由於BCP有較低的LUMO,進而形成一量子井結構,藉由量子井結構來限制更多的電子;而較低的HOMO亦能阻擋電洞,進而提升元件的亮度與效率,而CBP作為中間層,利用CBP具有雙極性載子傳輸特性,藉此拓展元件激子復合區,使其獲得更優異的顏色可調整範圍並改善元件特性。元件最佳結構為:ITO/NPB (50 nm)/CBP:BCzVB (7 wt%) (20 nm)/BCP (1 nm)/CBP (1 nm)/CBP:Ir(ppy)3 (7 wt%):Ir(piq)3 (3 wt%) (20 nm)/Bphen (30 nm)/LiF (1 nm)/Al (150 nm)。元件在8 V時,有高的亮度為6387 cd/m2,在44.46 mA/cm2下有最高的電流效率為5.32 cd/A,最高的外部量子效率為2.48%,當操作電壓4 V提升至8 V時,其CIE色座標由(0.366, 0.512)變化至(0.266, 0.371),色溫由4880 K變化至7730 K。
In this theme, a linear color-tunable near white organic light-emitting diode with a simple structure was investigated. Characteristic and physics mechanism of device was disscussed. NPB and Bphen films were utilized as the hole transport layer (HTL) and electron transport layer (ETL), respectively. Moreover, LiF played as a role of electron injection layer (EIL). CBP was chosen as the host material. The characteristics of the fluorescence and phosphorescence emission layers (EMLs) were optimized to enhance the color-tunable ability of the device. Furthermore, high luminance and stable efficiency were realized, by inserting CBP and BCP carrier modulation layers into the emission layer (EML). The lower HOMO and LUMO levels of BCP was beneficial for carrier trapping in the emission layer (EML). Meanwhile, the bipolar property of CBP improved the transport of holes and electrons. Hence, the recombination zone of excitons was expanded and the performance of device was improved. The optimal structure of device was ITO/NPB (50 nm)/CBP:BCzVB (7 wt%) (20 nm)/BCP (1 nm)/CBP (1 nm)/CBP:Ir(ppy)3 (7 wt%):Ir(piq)3 (3 wt%) (20 nm)/Bphen (30 nm)/LiF (1 nm)/Al (150 nm). The device exhibits maximum luminance of 6387 cd/m2 at 8 V, current efficiencies of 5.34 cd/A at 44.46 mA/cm2, and external quantum efficiency of 2.48%. When operating voltages varied from 4 V to 8 V, CIE coordinates were shifted from (0.366, 0.512) to (0.266, 0.371), and color temperature increased from 4880 K to 7730 K.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 前言 1
1-1 有機發光二極體的發展 1
1-2 研究動機 3
第二章 有機發光二極體的基礎理論 7
2-1 有機發光二極體材料介紹 7
2-1-1 陽極材料 7
2-1-2 陰極材料 8
2-1-3 電洞傳輸層 8
2-1-4 電子傳輸層 9
2-1-5 電洞阻擋層 9
2-1-6 電子注入層 10
2-2 有機發光二極體顯示原理 11
2-2-1 發光機制 11
2-2-2 能量轉移機制 12
2-2-3 p-i-n結構 14
2-2-4 元件效率計算 15
第三章 實驗方法 18
3-1 實驗步驟 18
3-2 實驗材料 19
3-3 蒸鍍源製作 22
3-4 玻璃基板處理 22
3-5 真空熱蒸鍍系統 24
3-6 實驗量測系統 26
第四章 結果與討論 27
4-1 優化發光層中Ir(piq)3摻雜濃度並探討有機發光二極體的EL特性 28
4-2 優化左側發光層中BCzVB摻雜濃度並探討元件的EL特性 38
4-3 在右側發光層摻雜BCzVB作為增感劑探討元件的EL特性 48
4-4 優化Ir(ppy)3摻雜濃度在右側發光層探討元件的EL特性 57
4-5 加入CBP夾層作為載子調制層探討元件的EL特性 70
4-6 加入BCP夾層作為載子調制層探討元件的EL 特性 81
4-7 調整螢、磷發光層厚度探討元件的EL特性 92
第五章 結論 103
參考文獻 104
論文集 108

[1]A. Kohnen, M. Irion, M.C. Gather, N. Rehmann, P. Zacharias, K.Meerholz, J. Mater, Chem. 20 (2010) 3301.
[2]F. Zhao, Z. Zhang, Y. Liu, Y. Dai, J. Chen, D. Ma, Org, Electron. 13 (2012) 1049.
[3]W. Zhu, Q. Wang, B. Li, X. Zhang, L. Lu, B. Wei, J. Zhang, C. Li, J. Phys.D: Appl. Phys. 43 (2010) 205102.
[4]Y. Sun, N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson, S.R. Forrest, Nature 440 (2006) 908.
[5]F.S. Juang, L.A. Hong, S.H. Wang, Y.S. Tsai, M.H. Gao, Y. Chi, H.P. Shieh, J.S. Hsu, Jpn. J, Appl. Phys. 50 (2011) 04DK04.
[6]W.J. Hyun, J.K. Park, O.O. Park, B.D. Chin, J. Phys. D: Appl. Phys. 45 (2012) 025101.
[7]B.D. Chin, J.K. Kim, O.O. Park, J. Phys. D: Appl. Phys. 40 (2007) 4436.
[8]Y. Sun, N. Giebink, H. Kanno, B. Ma, M. Thompson, S.R. Forrest, Nature 440 (2006) 908.
[9]Q. Wang, D. Ma, Chem. Soc. Rev. 39 (2010) 2387.
[10]F.X. Zang, T.C. Sum, A.C.H. Huan, T.L. Li, W.L. Li, F.R. Zhu, Appl. Phys. Lett. 93 (2008) 023309.
[11]M.A. Baldo, C. Adachi, S.R. Forrest, Phys. Rev. B, 62 (2000) 10967.
[12]G. Schwartz, S. Reineke, T.C. Rosenow,0 K. Walzer, K. Leo, Adv. Funct. Mater. 19 (2009) 1319.
[13]Y. Jiang, L. Zhou, R. Cui, Y. Li, X. Zhao, H. Zhang, Dyes and Pigments 128 (2016).
[14]S.I. Yoo, J.A. Yoon, N.H. Kim, J.W. Kim, J.S. Kang, C.B. Moon, W.Y. Kima, J. Lumin. 160 (2015) 346.
[15]B. Liu, Z. Xu, J. Zou, H. Tao, M. Xu, D. Gao, L. Lan, L. Wang, H. Ning, J. Peng. J.Ind. Eng. Chem. 27 (2015) 240.
[16]S.H. Yang, P.J. Shih, W.J. Wu, Y.H. Huang, J. Lumin. 142 (2013) 86.
[17]T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys. 73 (1993) 4344.
[18]S. Seki, Y. Sawada, T. Nishide, Thin Solid Films. 22 (2001) 388.
[19]T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Appl. Phys. Lett. 73 (1998) 2763.
[20]S. Shi, D. Ma, Appl. Surf. Sci. 6337 (2006) 252.
[21]S.J. Su, T. Chiba, T. Takeda, J. Kido, Adv. Mater. 20 (2008) 2125.
[22]M. Klessinger, J. Michl, VCH Publishers, New York (1995).
[23]J. Yeo, B. Lee, Appl. Phys. Lett. 88 (2006) 073512.
[24]S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, and N. R.Armstrong, Appl. Phys. Lett. 84, (1998)2324.
[25]T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett. 73 (1998) 2763.
[26]H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern, M. Stoβel, J. Appl. Phys. 89 (2001) 420.
[27]C. W. T, S.A. VanSlyke and C.H. Chen, J. Appl. Phys. 65 (1989) 3610.
[28]M. A. Lampert, P. Mark, Current Injection in Solids (1970) New York, Academic Press.
[29]P. N. Murgatroyd, J. Phys. D, (1970) 151.
[30]Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, Q. Huang, Appl. Phys. Lett., 91, (2007) 063510.
[31]S. R. Forrest, International Display Manufacturing Conference 87 (IDMC) (2003)
[32]M. Uchida, C. Adachi, T. Koyama, Y. Taniguchi, J. Appl. Phys. 86 (1999) 1680.
[33]R.J. Holmes, B.W. D’Andrade, S.R. Forrest, X. Ren, J. Li, M.E. Thompson, Appl. Phys. Lett. 83 (2003) 3818.
[34]Q. Wang, J.Q. Ding, D.G. Ma, Y.X. Cheng, L.X. Wang, X.B. Jing, F.S. Wang, Adv. Funct. Mater. 19 (2009) 84.
[35]B. W. D’Andrade, R. J. Holmes, S. R. Forrest, Adv. Mater. 16, (2004) 624.
[36]X.–M. Yu, H.–S. Kwok, W.–Y. Wong, G.–J. Zhou, Chem. Master. 18, (2006) 5097.
[37]Y. Sun, S. R. Forest, appl. Phys. Lett.91, (2007) 263503.
[38]N. C. Giebink and S. R. Forrest, Phys. Rev. B 77(23), (2008) 235215.
[39]Q. Wang, D. Ma, Chem. Soc. Rev. 39 (2010) 2387.
[40]M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 75 (1999) 4.
[41]C. Adachi, M.A. Baldo, S.R. Forrest, M.E. Thompson, Appl. Phys. Lett. 77 (2000) 904.
[42]C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 90 (2001) 5048.
[43]C. Adachi, M.A. Baldo, S.R. Forrest, S. Lamansky, M.E. Thompon, R.C. Kwong, Appl. Phys. Lett. 78 (2001) 1622.
[44]C. Adachi, R.C. Kwing, P. Djurovich, V. Adaovich, M.A. Baldo, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 79 (2001) 2082.
[45]P. Chen, W. Xie, J. Li, T. Guan, Y. Duan, Y. Zhao, S. Liu, C. Ma, Appl. Phys. Lett. 91 (2007) 023505.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊