(3.229.120.26) 您好!臺灣時間:2021/04/10 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:龔聖評
研究生(外文):GONG,SHENG-PING
論文名稱:股骨頸骨折治療之空心螺釘最佳化設計
論文名稱(外文):Optimal Design of Hollow Screw for Femoral Neck Fractures Treatment
指導教授:黃世疇
指導教授(外文):HUANG,SHYH-CHOUR
口試委員:張志涵黃世疇蔡明章
口試委員(外文):CHANG,CHIH-HANHUANG,SHYH-CHOURTSAI,MING-CHANG
口試日期:2016-06-13
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:102
中文關鍵詞:股骨頸骨折有限元素分析田口方法基因演算法
外文關鍵詞:Femoral Neck FractureFinite Element AnalysisTaguchi MethodGenetic Algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:217
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用田口方法、反應曲面法及基因演算法探討非位移型股骨頸骨折之內固定空心螺釘最佳化設計。研究中使用SolidWorks繪圖軟體建立骨折狀態及空心螺釘之模型,並應用正常髖關節步態週期站立階段之數據,以有限元素分析軟體ANSYS Workbench進行模擬分析,透過田口方法找出內固定空心螺釘之最佳參數配置組合及對品質特性具顯著的影響因子,做為預測數學模型的變數;接著運用反應曲面法之參數配置建立數學方程式及數學模型之擬合;隨後運用基因演算法進行搜尋分析運算,找出進一步收斂的最佳參數配置組合。
由分析結果得知,本研究分析程序可明顯改善整體骨折部位狀態之應力分佈,其平均降幅達23.42%。最佳參數配置組合為不鏽鋼(316L)材料、外徑6.5mm、使用標準螺紋進行固定、螺紋長度75mm、螺距1.5mm、螺釘中空直徑3.5mm,且其應力負載也較趨近於正常股骨之應力狀態。研究流程有助於醫學研發單位節省相關之開發成本及時間,並獲得較佳的設計結果。

This thesis applied the Taguchi method, response surface methodology and genetic algorithm to optimize the hollow screws which are used to treat non-displacement femoral neck fractures. In the study, SolidWorks was used to design fracture situation and screw models, and ANSYS Workbench was used for simulation analysis by applying the gait data of normal human hip. The best combination and significant factors of the screw was found out by Taguchi method, and the mathematical model was established by response surface methodology, then the optimal combination parameters were obtained by genetic algorithm.
The results show that the process developing in this study can use to decrease the stress distribution to 23.42%. The finally best parameters combination is: material using 316L, and standard thread which outside diameter of the screw with 7.0mm, thread with 75mm, pitch with 3.5mm and the center hole diameter with 3.5mm. The stress loading distribution of femur under these parameters combination tends to normal. The process of this study can help medical researcher saving development costs and time, and obtain better design result.

摘要
Abstract
致謝
目錄
表目錄
圖目錄
第一章 緒論
1.1前言
1.2生醫材料之介紹
1.3文獻回顧
1.4研究動機
1.5研究目的
1.6論文架構
第二章 股骨頸骨折之生物力學基礎理論
2.1股骨及髖關節解剖構造之介紹
2.2髖關節之運動學介紹
2.3股骨頸骨折之背景與介紹
第三章 研究相關理論
3.1田口方法
3.1.1田口方法設計流程概述
3.1.2直交表
3.1.3參數設計
3.1.4信號雜音比(S/N比)
3.1.5回應表及回應圖
3.2反應曲面法
3.2.1反應曲面法設計流程與概述
3.2.2數學模型
3.2.3實驗設計方法
3.3基因演算法
3.3.1基因演算法設計流程概述
3.3.2編碼及適應函數
3.3.3選擇運算
3.3.4交配運算
3.3.5突變運算
第四章 空心螺釘最佳化設計與分析
4.1研究流程說明
4.2模型建立
4.2.1股骨立體模型
4.2.2空心螺釘模型建立
4.3有限元素分析設定
4.3.1選定元件材料
4.3.2負載與邊界條件
4.3.3建立元件網格
4.4田口方法之分析
4.4.1直交表之選定與有限元素分析之結果
4.4.2回應表與回應圖繪製
4.5反應曲面結合基因演算法
4.5.1反應曲面之實驗設計與數學模型分析
4.5.2基因演算法之疊代分析
第五章 結果與討論
5.1最佳化分析之結果探討
5.1.1空心螺釘之最佳參數設計分析
5.1.2最佳化分析流程總結
5.2空心螺釘之顯著因子反應曲面探討
5.2.1最佳空心螺釘設計之迴歸分析
5.2.2顯著因子的相互影響效應
第六章 結論與未來展望
6.1結論
6.2未來展望
參考文獻
個人資料


[1]張以函、林修任等人,2014,“不同骨螺釘排列治療Pauwels III型股骨頸骨折之有限元素分析”,SIMULIA (Abaqus) Regional User Meeting,台北,11月。
[2]Maehlum S., Daljord O., 1984,“Acute sports injuries in Oslo: a one-year study”, British Journal of Sports Medicine, vol. 18, pp.181-185.
[3]Lance C., Liza E., 2003,“Hip Fractures in Adults”, Journal of American Family Physician, vol. 67, pp.537-572.
[4]施麗媛,2003,“老年骨折與處理”,臺灣老年醫學學會,51卷,頁22-26。
[5]Ratner B. D. et al.,2004,Biomaterials Science : An Introduction to Materials in Medicine.
[6]趙月秀,2004,“台灣生醫材料產業現況”,生技/醫藥速報半月刊,第119期。
[7]陳啟祥,2005,“生醫材料技術與產業發展現況”,經濟部生物技術與醫藥工業發展推動處。
[8]Galante J., et al., 1991,“The biologic effects of implant materials”, Journal of Orthopaedic Research, vol.9, pp.760-775.
[9]Jack E. L., 1996,“Ceramics:Past, present, and future”, Bone, vol.19, pp.121-128.
[10]Julius W., 1892, Das Gesetz der Transformation der Knochen:Hirschwald, Berlin.
[11]Frost H. M., 1987,“Bone "mass" and the "mechanostat": a proposal”, The Anatomical Record, vol.219, pp.1-9, September.
[12]Frost H. M., 1990,“Skeletal structural adaptations to mechanical usage (SATMU): Redefining Wolff's law - the bone modeling problem”, The Anatomical Record, vol.226, pp.403-413.
[13]Evans M., et al., 1990,“Design and testing of external fixator bone screws”, Journal of Biomedical Engineering, vol.12, pp.457-462.
[14]Kyle R. F., et al., 1995,“Fractures of the proximal part of the femur”, Instructional Course Lectures, vol.44, pp.227-253.
[15]Lagerby M., et al., 1998,“Cannulated screws for fixation of femoral neck fractures:no difference between Uppsala screws and Richards screws in a randomized prospective study of 268 cases”, Acta Orthopaedica Scandinavica, vol.69, pp.387-391.
[16]Martyn J. P., Chris B., 1998,“Choice of implant for internal fixation of femoral neck fractures:meta-analysis of 25 randomised trials including 4925 patients”, Acta Orthopaedica Scandinavica, vol.69, pp.138-143.
[17]Lin J., et al., 2001,“Bending strength and holding power of tibial locking screws”, Clinical Orthopaedics and Related Research, vol.385, pp.199-206.
[18]Hansson S., Werke M., 2003,“The implant thread as a retention element in cortical bone:the effect of thread size and thread profile:a finite element study”, Journal of Biomechanics, vol.36, pp.1247-1258.
[19]Rina S., et al., 2006,“Assessment of different kinds of stems by experiments and Fem analysis:Appropriate stress distribution on a hip prosthesis”, Clinical Biomechanics, vol.21, pp.826-833.
[20]Tan V., et al., 2007,“Two-screw femoral neck fracture fixation:a biomechanical analysis of 2 different configurations”, American Journal of Orthopedics, vol.36, pp.481-485.
[21]Wang T.‚ et al.‚ 2008‚“Parameter Optimization and Analysis on Surgery for Fracture of the Femur Neck Based on QCT”, International Conference on Bioinformatics and Biomedical Engineering‚ vol.46‚ pp.1809-1812.
[22]Jiong M.‚ et al.‚ 2014‚“Finite element analysis of the effect of cannulated screw placement and drilling frequency on femoral neck fracture fixation”, Injury‚ vol.45‚ pp.2045-2050.
[23]Thomas K. S.‚ et al.‚ 2015‚“Biomechanical properties of a posterior fully threaded positioning screw for cannulated screw fixation of displaced neck of femur fractures”, Injury‚ vol.46‚ pp.2130-2133.
[24]Wang S. H.‚ et al.‚ 2015‚“Using a modified Pauwels method to predict the outcome of femoral neck fracture in relatively young patients”, Injury‚ vol.46‚ pp.1969-1974.
[25]http://www.medicalook.com, Thigh Function, 2007.
[26]許世昌,1997,新編解剖生理學,永大書局,台北。
[27]趙俊彥,2003,解剖生理學(下),明儒教育文化出版社,高雄。
[28]http://bonebro.com/hip-structure,骨哥論壇,2016。
[29]Rice University,2013,Anatomy & Physiology,USA.
[30]胡明一,2000,人體解剖學,藝軒圖書出版社,台北。
[31]謝伸裕,1994,活體解剖學,力大圖書有限公司,台北。
[32]Affatato S.‚ 2014‚ Surgical Techniques in Total Knee Arthroplasty and Alternative Procedures‚ Elsevier.
[33]Nordin M., Frankel V. H., 2001, Basic biomechanics of the musculoskeletal system, Lippincott Williams & Wilkims.
[34]Stansfield B. W., et al., 2003,“Direct comparison of calculates hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb”, Journal of Biomechanics, vol.36, pp.929-936.
[35]Johnston R. C., Smidt G. L., 1969,“Measurement of hip-joint notion during walking:evaluation of an electrogoniometric method”, Journal of Bone & Joint Surgery, vol.36, pp.1082-1094.
[36]http://big5.wiki8.com/gugujingguzhe_20703,醫學百科,1990。
[37]http://www.rcemlearning.co.uk/references/fractured-neck-of-femur, Fractured Neck of Femur, 2013.
[38]Friedrich P., 1935, Der Schenkelhalsbruch:Ein mechanisches Problem, Stuttgart:Ferdinand Enke, Germany.
[39]http://www.orthopaedicsone.com/Main, Pauwels classification, 2012.
[40]http://emedicine.medscape.com/article/86659-overview#a5, Femoral Neck Fracture, 2013.
[41]https://aotrauma.aofoundation.org/Structure/Pages/default.aspx, Müller AO Classif-
ication of Fractures - Long Bones, 1984.
[42]林炳佑,2010,近端股骨骨折固定器之設計改良與力學評估,國立台灣科技大學,碩士論文。
[43]蘇朝敦,2002,品質工程,中華民國品質學會,台北。
[44]周至宏,2014,最佳化方法課程講義,國立高雄應用科技大學,電機工程系碩士班,台灣。
[45]蘇朝墩,2009,快速精通實驗設計-邁向Six Sigma的關鍵方法,前程文化事業有限公司,台北。
[46]Myers R. H., Montgomery D. C., 1996, “Response Surface Methodology:Process and Product Optimization Using Designed Experiments”, American Statistical Association, vol.38, pp.284-286.
[47]林李旺,2013,突破品質水準-實驗設計與田口方法之實務應用,全華圖書股份有限公司,台北。
[48]John H., 1975, Adaptation in Natural and Artificial System, MIT Press Cambridge, USA.
[49]Michalewicz Z., 1992, Genetic Algorithms + Data Structures = Evolution program, Springer-Verlag, USA.
[50]Kenneth A. D., 1975, An analysis of the behavior of a class of genetic adaptive system, University of Michigan, USA.
[51]Carlos A., Alan D., 1999,“MOSES:A Multiobjective Optimization Tool for Engineering Design”, Engineering Optimization, vol.31, pp.337-368.
[52]Supakit R., Kasem S.‚ 2013‚“Finite element analysis of intertrochanteric / subtrochanteric intramedullary nail system for the different hip fracture configuration”, EBSCO, vol.43, pp.169-173.
[53]Samadhiya S., et al.‚ 2014‚“Biomechanical Analysis of Different Knee Prosthesis Biomaterials Using Fem”, IOSR-Journal of Mechanical and Civil Engineering, vol.11, pp.120-128.
[54]Engh C. A., et al., 1993,“Roentgenographic densitometry of bone adjacent to a femoral prosthesis”, Clinical Orthopaedics, vol.292, pp.177-190.
[55]Seral B., et al.‚ 2004‚“Finite element study of intramedullary osteosynthesis in the treatment of trochanteric fractures of the hip:Gamma and PFN”, Injury, vol.35, pp.130-135.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔