(54.236.62.49) 您好!臺灣時間:2021/02/26 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張郁萱
研究生(外文):Jhang,Yu-Syuan
論文名稱:最佳化設計應用在梯形扳手開發
論文名稱(外文):Optimization design of a new spanner
指導教授:林銘哲
指導教授(外文):Lin,Ming-Che
口試委員:黃世疇張嘉隆林銘哲
口試委員(外文):Huang,Shyh-ChourChang,Chia-LungLin,Ming-Che
口試日期:2016-07-02
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:最佳化田口方法多目標反應曲面法扳手
外文關鍵詞:OptimizationTaguchi methodsMulti-objective Response surface methodologySpanner
相關次數:
  • 被引用被引用:3
  • 點閱點閱:330
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用魚骨圖篩選梯形扳手之設計參數,利用最佳化理論針對延長使用年限、成本降低、操作安全與操作便利性多目標進行最佳化設計。首先選定手柄外徑、手柄彎曲半徑、手柄斜角與手柄內徑四個設計因子,進而透過3D繪圖軟體建構梯形扳手之實體模型,利用有限元素分析軟體觀察梯形扳手承受彎矩時之應力分布狀況,再以田口法與反應曲面法設計達到減少應力集中值與質量輕量化的最佳參數組合。經由比較分析結果顯示反應曲面法能夠得到全域區域之最佳解,而田口方法只能得到局部區域的較佳解。最後使用多目標反應曲面法來進行最佳化分析,結果顯示當其梯形扳手最佳尺寸組合為手柄外徑22.4 mm、手柄內徑14.0 mm、手柄斜角40.0 度與手柄彎曲半徑31.0 mm時,其最佳全域等效應力為154.00 MPa、最小質量為0.66 kg,最大應力值比單目標反應曲面法增加3.66 %、比田口方法減少2.92 %,最小質量比反應曲面法增加4.55 %、比田口方法增加3.03 %。
This study select design parameters of the new spanner using fishbone diagram and optimization theory for multi-objective optimization design in relation to increase of service life, cost down, handling safety and handling convenience. The first, four chosen design factors external diameter of handle、bend radius of handle、bevel angle of handle and inner diameter of handle are used to create the new spanner model via 3D drawing software. Finite element analysis software show the disposition of stress when the new spanner is bearing a bending moment. Design target for decrease stress concentration and mass lightweight are applied to Taguchi methods and Response surface methodology.
The results indicates the Taguchi methods only get local region batter values, but Response surface methodology can get global region optimization values. The final, we use multi-objective response surface methodology to find the optimization design. The results show the optimization global region equivalent tress was 154.0 MPa and minimum mass was 0.66 kg when external diameter of handle was 22.4 mm , bend radius of handle was 31.0 mm, bevel angle of handle was 40.0 deg and inner diameter of handle was 14.0 mm. The maximum stress increase by 3.66% and the minimum mass increase by 4.55% in comparison with Single-objective Response surface methodology. The optimization stress decrease by 2.92% and the minimum mass increase by 3.03% in comparison with Taguchi methods.
中文摘要 ............................................................................................................... iii
ABSTRACT ............................................................................................................... iv
誌謝 ................................................................................................................ v
目錄 ............................................................................................................... vi
表目錄 ............................................................................................................. viii
圖目錄 ................................................................................................................ x
第一章 緒論 ........................................................................................................ 1
1.1 研究動機與目的 .................................................................................... 1
1.2 文獻回顧 ................................................................................................ 3
第二章 研究內容及方法 .................................................................................. 13
2.1 研究內容 .............................................................................................. 13
2.2 研究方法及步驟 .................................................................................. 14
第三章 理論及實驗設計法 .............................................................................. 15
3.1 有限元素法分析(Finite Element Method) .......................................... 15
3.2 田口方法(Taguchi Methods) ................................................................ 19
3.2.1 3k因子設計(3k Factorial Design).................................................. 22
3.2.2 直交表(Orthogonal Array) .......................................................... 23
3.2.3 訊噪比(S/N Ratio) ....................................................................... 25
3.2.4 變異數分析 ................................................................................. 28
3.3 反應曲面法 .......................................................................................... 30
3.3.1 反應曲面設計 ............................................................................. 31
3.3.2 線性迴歸模型(Linear Regression Model) .................................. 37
3.3.3 多目標最佳化 ............................................................................. 38
第四章 結果與討論 .......................................................................................... 42
4.1 魚骨圖因子選定 .................................................................................. 42
4.2 梯形扳手材料及邊界條件之設定 ...................................................... 45
4.3 以梯形扳手全域等效應力望小建構反應曲面數學模型 .................. 50
4.4 以梯形扳手總質量望小建構反應曲面數學模型 .............................. 57
4.5 利用田口方法建立梯形扳手全域等效應力望小分析 ...................... 64
4.6 利用田口方法建立梯形扳手總質量望小分析 .................................. 67
4.7 分析與結果 .......................................................................................... 70
4.7.1 梯形扳手全域等效應力分析結果 ............................................. 70
4.7.2 梯形扳手總質量分析結果 ......................................................... 71
4.7.3 多目標反應曲面法分析結果 ..................................................... 72
第五章 結論及未來研究方向 .......................................................................... 79
5.1 結論 ...................................................................................................... 79
5.2 未來研究方向 ...................................................................................... 80
參考文獻 .............................................................................................................. 81
[1] 汪君諦,傅遠東,2013,”新式扳手之設計開發”,國立高雄應用科技大學專題,10月。
[2] T.-H. Hou, C.-H. Su and W.-L. Liu, “Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, ” Journal of Powder Technology, Vol. 173, Issue 3, pp. 153-162, 2007.
[3] M. Jamshidian, E. A. Tehrany, M. Imran, M. Jacquot and S. Desobry, “Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies, ” Comprehensive Reviews in Food Science and Food Safety, Vol. 9, Issue 5, pp. 552-571, 2010.
[4] S. Pal and S. K. Gauri, “Multi-Response Optimization Using Multiple Regression–Based Weighted Signal-to-Noise Ratio (MRWSN), ” Quality Engineering, Vol. 22, Issue 4, 2010.
[5] O. M. Hilmi, M. A. S. Yulis, “Optimising injection moulding parameters that satisfies part qualities by using Taguchi method, ” 2012 IEEE Business, Engineering & Industrial Applications Colloquium, pp. 307-312, 2012.
[6] N. Muhammad, Y. H. P. Manurung, M. Hafidzi, S. K. Abas, G. Tham and E. Haruman, “Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM, ” Journal of Mechanical Science and Technology, Vol. 26, Issue 8, pp. 2365-2370, 2012.
[7] A. C. Lina and T.-C. Wang, “Multi-objective Optimal Design of Driving Spring in Slide Cover Hinge, ” Computer-Aided Design and Applications, Vol. 10, Issue 5, 2013.
[8] N. H. M. Nora, N. Muhamad, A. K. A. M. Ihsan and K. R. Jamaludin, “Sintering Parameter Optimization of Ti-6Al-4V Metal Injection Molding for Highest Strength Using Palm Stearin Binder, ” INTERNATIONAL TRIBOLOGY CONFERENCE MALAYSIA 2013, Vol. 68, pp. 359-364, 2013.
[9] R. X. K. Gao, W. J. R. Hoefer and E. P. Li, “Quality Synthesis Based Robust Optimization for Electromagnetic Wave Absorbers Using Taguchi’s Tolerance Design Method, ” IEEE Transactions on Antennas and Propagation, Vol. 62 , Issue 4, pp. 2102-2108, 2014.
[10] K. Bouachaa, M. A. Yalleseb, S. Khamela and S. Belhadib, “Analysis and optimization of hard turning operation using cubic boron nitride tool, ” International Journal of Refractory Metals and Hard Materials, Vol. 45, pp. 160-178, 2014.
[11] A. K. Parida, B. C. Routara and R. K. Bhuyan, “Surface roughness model and parametric optimization in machining of GFRP composite: Taguchi and Response surface methodology approach, ” 4th International Conference on Materials Processing and Characterzation, Vol. 2, Issues 4-5, pp. 3065-3074, 2015.
[12] D. V. Srikanth and M. S. Rao, “Application of Taguchi & Response Surface methodology in Optimization for Machining of Ceramics with Abrasive Jet Machining, ” 4th International Conference on Materials Processing and Characterzation, Vol. 2, Issues 4-5, pp. 3308-3317, 2015.
[13] T. B. Gorji and A. A. Ranjbar, “Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology, ” Solar Energy, Vol. 122, pp. 314-325, 2015.
[14] A. Ammeri, H. Chabchoub, W. Hachicha and F. Masmoudi, “Combining Taguchi approach and response surface methodolgy for lot-sizing problem in MTO environnement, ” 2015 4th International Conference on Advanced Logistics and Transport, pp. 252-256, 2015.
[15] G. Suna, J. Fangb, X. Tiana, G. Lia and Q. Li, “Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design, ” Expert Systems with Applications, Vol. 42, Issue 9, pp. 4482-4492, 2015.
[16] Q. Lia, L. Caia, Y. Fub, H. Wanga and Y. Zou, “Fracture properties and response surface methodology model of alkali-slag concrete under freeze–thaw cycles, ” Construction and Building Materials, Vol. 93, pp. 620-626, 2015.
[17] S. Kumar, G.H.V.C. Chary and M.G. Dastidar, “Optimization studies on coal–oil agglomeration using Taguchi (L16) experimental design, ” Fuel, Vol. 141, pp. 9-16, 2015.
[18] K. Kanthavel, R. Palanisamy and S. Vivek, “Investigation of the Mechanical Properties of Bagasse Fiber-Reinforced Epoxy Composite using Taguchi and Response Surface Methodology, ” BioResources, Vol. 10, No. 2, 2015.
[19] M. A. Mohamed, Y. H. P. Manurung and M. N. Berhan, “Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology, ” Journal of Mechanical Science and Technology, Vol. 29, Issue 9, pp. 2323-2331, 2015.
[20] M. Patel G Ca, P. Krishnaa and M. B. Parappagoudar, “Modelling of squeeze casting process using design of experiments and response surface methodology, ” International Journal of Cast Metals Research, Vol. 28, Issue 3, pp. 167-180, 2015.
[21] V. Aggarwal, S. S. Khangura and R. K. Garg, “Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology, ” The International Journal of Advanced Manufacturing Technology, Vol. 79, Issue 1, pp. 31-47, 2015.
[22] C. Zhu, Y. He and T. Li, “Application of a Taguchi method for optimizing the preparation and degradation parameters of composite photocatalyst TiO2-MWCNTs, ” 2015 First International Conference on Reliability Systems Engineering, pp. 1-6, 2015
[23] S. Debnath, M. M. Reddy and Q. S. Yi, “Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method, ” Vol. 78, pp. 111-119, 2016.
[24] R. U. Owolabi, M. A. Usman and A. J. Kehinde, “Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology, ” Journal of King Saud University - Engineering Sciences, 2016.
[25] i. Asiltürk, S. Neşelib amd M. A. ince, “Optimisation of parameters affecting surface roughness of Co28Cr6Mo medical material during CNC lathe machining by using the Taguchi and RSM methods, ” Measurement, Vol. 78, pp. 120-128, 2016.
[26] S. Kannana, S. S. Kumaranb and L.A. Kumaraswamidhas, “An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process, ” Journal of Alloys and Compounds, Vol. 666, pp. 131-143, 2016.
[27] S. A. Mousavia and S. Ibrahim, “Application of response surface methodology (RSM) for analyzing and modeling of nitrification process using sequencing batch reactors, ” Desalination and Water Treatment, Vol. 57, Issue 13, pp. 5730-5739, 2016.
[28] S. H. Dhawane, T. Kumar and G. Halder, “Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method, ” Renewable Energy, Vol. 89, pp. 506-514, 2016.
[29] C.-N. Huang and C.-C. Yu, “Integration of Taguchi's method and multiple-input, multiple-output ANFIS inverse model for the optimal design of a water-cooled condenser, ” Applied Thermal Engineering, Vol. 98, pp. 605-609, 2016.
[30] L.-H. Tanga, S.-C. Tanb, P.-Z. Gaob and M. Zeng, “Parameters Optimization of Fin-and-Tube Heat Exchanger with a Novel Vortex Generator Fin by Taguchi Method, ” Heat Transfer Engineering, Vol. 37, Issue 3-4, pp. 369-381, 2016.
[31] M. Rahanga and P. K. Patowari, “Parametric Optimization for Selective Surface Modification in EDM Using Taguchi Analysis, ” Materials and Manufacturing Processes, Vol. 31, Issue 4, pp. 422-431, 2016.
[32] T. Huang, X. Song and M. Liu, “The optimization of the loading path for T-shape tube hydroforming using adaptive radial basis function, ” The International Journal of Advanced Manufacturing Technology, Vol. 82, Issue 9, pp. 1843-1857, 2016.
[33] R. N. Dasha, H. Mohammedb and T. Humairab, “An integrated Taguchi and response surface methodological approach for the optimization of an HPLC method to determine glimepiride in a supersaturatable self-nanoemulsifying formulation, ” Saudi Pharmaceutical Journal, Vol. 24, Issue 2, pp. 92-103, 2016.
[34] 何文獻,蔡進聰,林清煌,周至宏,2007,”應用反應曲面法與基因演算法於船體結構構件斷面尺寸之最佳化設計”,中國造船暨輪機工程學刊,26卷,1期,頁39-50,2月。
[35] 林志良,林谷鴻,2009,“晶圓切割製程的穩健設計-六標準差與田口實驗設計的應用”,工程科技與教育學刊,6卷,2期,頁213-225,6月。
[36] 蘇慧娟,2013,運用反應曲面法提升基因演算法效率探討,國立屏東科技大學,碩士論文。
[37] 林文燦,李偉正,曹淯瑋,劉文淵,2013,“應用反應曲面法與田口方法建構機械手臂伺服控制器參數最佳化”,智慧自動化產業期刊,6期。
[38] 紀博竣,2013,結合田口實驗法與反應曲面法於射出成型參數最適化之研究,建國科技大學,碩士論文。
[39] 林才富,2013應用有限元素法和田口法於貨櫃船拉繫平台結構之最適設計研究,國立臺灣海洋大學,碩士論文。
[40] 鄭鈺霖,2014,最佳化策略應用於壓力容器設計-以不同形式端板設計為例,國立高雄應用科技大學,碩士論文。
[41] 盧柏任,2014,應用田口法與反應曲面法於SMT印刷製程,龍華科技大學,碩士論文。
[42] 蘇建誠,卓漢明,林炎成,張哲瑋,2014,”反應曲面法對金屬基鑽石磨輪線放電修整與修銳之參數最佳化分析”,中國機械工程學會全國學術研討會論文集,12月。
[43] 劉佳蘴,林炎成,卓漢明,張哲瑋,2014,”應用反應曲面法於氣中放電加工參數最佳化研究”,中國機械工程學會全國學術研討會論文集,12月。
[44] 蘇耿民,2015,以有限元素法及反應曲面法分析傘型齒輪之旋轉鍛造加工問題,國立中央大學,碩士論文。
[45] 許筌祺,2015,以田口方法實驗研究剛性攻牙條件與刀具幾何參數對切削扭矩之影響,國立臺北科技大學,碩士論文。
[46] 朱峯宏,2015,田口品質法於承載帶之製程參數最佳化研究,國立高雄應用科技大學,碩士論文。
[47] 焦至平,2015,以田口方法最佳化固態氧化物燃料電池八元鈣鈦礦-GDC-Ag複合陰極材料,國立臺北科技大學,碩士論文。
[48] 林彥呈,2015,利用田口法最佳化微量貴金屬添加之銅基汽機車廢氣轉化觸媒製備,國立臺北科技大學,碩士論文。
[49] 江志祥,2015,運用田口方法改善鋰離子電池組測試之效率,國立臺北科技大學,碩士論文。
[50] 韓家和,2015,應用田口方法探討2+2插座端子之翹曲研究,國立臺北科技大學,碩士論文。
[51] E. Barkanov, 2001, INTRODUCTION TO THE FINITE ELEMENT METHOD, Institute of Materials and Structures Faculty of Civil Engineering Riga Technical University.
[52] MONTGOMERY, 1998, 實驗設計與分析,黎正忠譯,高立圖書有限公司,台北。
[53] .T Su, 2013, 品質工程:線外方法與應用,蘇朝墩譯,前程文化事業有限公司,新北。
[54] 李輝煌,2015,田口方法:品質設計的原理與實務,高立圖書有限公司,台北。
[55] 林李旺,2013,突破品質水準 – 實驗設計與田口方法之實務應用,全華圖書股份有限公司。
[56] 李輝煌,2014,Finite Element Simulations with ANSYS Workbench 15, 全華圖書股份有限公司。
電子全文 電子全文(網際網路公開日期:20211231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔