跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:汪建鑫
研究生(外文):WANG, JIAN-SIN
論文名稱:整合熱管熱交換器於吸附除濕裝置之實驗研究
論文名稱(外文):An Experimental Investigation of a Desiccant Device Integrated with Heat Pipe Heat Exchanger
指導教授:徐金城徐金城引用關係
指導教授(外文):SHYU, JIN-CHERNG
口試委員:吳世國楊愷祥徐金城
口試委員(外文):WU, SHIH-KUOYANG, KAI-SHINGSHYU, JIN-CHERNG
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:熱管吸附除濕乾燥節能矽膠
外文關鍵詞:heat pipeadsorptiondehumidificationdryenergy savingsilica gel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
由於台灣的氣候影響使得環境高溫高濕,而在高溫高濕下不僅人體感到不適,許多產業的產品品質及保存也會受到影響,故控制環境以及乾燥產品顯得相當重要。為了改善一般熱風乾燥機的性能,本研究開發整合熱管熱交換器於吸附除濕裝置,藉由吸附除濕降低乾燥機入口濕度後,再將空氣加熱,藉此改善熱風乾燥機的性能,而吸附劑之脫附由於熱阻較大使得脫附相當耗能,故藉由熱交換器來增加脫附性能,並整合熱管進行廢熱回收利用使得裝置於脫附時增加節能效果。本研究中整合熱管熱交換器於吸附裝置由50根銅熱管與72片鰭片組成,裝置外觀尺寸為寬度250 mm高度231.6 mm深度100 mm並以2/3的吸附區與1/3的廢熱回收區組成,兩區域間以電木分隔,並於吸附區48片鰭片上披覆矽膠為吸附劑,此外本裝置由一個附有鼓風機、電熱加熱器、流量計、熱電偶、差壓計與溫濕度感測元件的系統於環控室來量測性能。吸附方面:環境對吸附性能有所影響,在環境溫度15 ℃時,環境濕度20 %與環境濕度85 %之間吸附率相差4.89 倍;環境溫度25 ℃時,環境濕度20 %與環境濕度85 %之間吸附率相差3.8 倍;環境溫度35 ℃時,環境濕度20 %與環境濕度85 %之間吸附率相差3.66 倍。脫附方面:脫附端加熱溫度60 ℃時,使用廢熱110 ℃較無使用廢熱節省38.5 %的能耗,使用廢熱130 ℃較無使用廢熱節省53.2 %的能耗。乾燥機性能方面:若將環境相對濕度為85 %降低至環境相對濕度為20 %將可以提升10.8%的乾燥速率以及節省10.8%的能耗,於環境溫度35 ℃與環境相對濕度為85 %情況下使用本裝置將可提升45.45%的乾燥速率以及節省45.3%的能耗。
The climate in Taiwan makes the environment hot and humid. Not only people feel uncomfortable in such climate, but also the industrial products are not easy to preserve. As a result, controlling the environment and dehumidifying the products are obviously significant. In order to improve the performance of the commonhot air dryer, this study aims to develop a desiccant device that incorporates a heat pipe heat exchanger. Therefore, the humidity of the air at inlet of the dryer can be reduced, so that the subsequent air heating consumes less energy and improve the performance of the dryer. However, because of a large thermal resistance, it needs considerable energy to desorb the adsorbent. By using the heat pipe heat exchanger to recover the waste heat, the energy consumption fordesorption can thus be reduced.
The heat pipe heat exchanger consists of 50 copper heat pipes and 72 pieces of copper rectangular fin and has dimensions of 250 mm in width 231.6 mm in height and 100 mm in depth. 2/3 of the heat exchanger is absorption zone, and the rest of the heat exchanger is designated as waste heat recovery zone. Both zones are separated with a backlite, and the surface of the 48 fins in the absorption zone is densely covered with silicone absorbent. Besides the heat pipe heat exchanger, the present experimental system, which is placed in an environment control room, consists of a blower, electric heaters, flowmeters, thermocouples, differential gauges, temperature sensors and humidity sensorsin order to measure the performance. The results show that as the relative humidity is increased from 20% to 85% at a temperature 15℃, the adsorption rate can be increased by a factor of 4.98 times. As the relative humidity is increased from 20% to 85% at a temperature 25℃, the adsorption rate can be increased by a factor of 3.8 times. As the relative humidity is increased from 20% to 85% at a temperature 35℃, the adsorption rate can be increased by a factor of 3.66 times. When desorption zone was 60℃ heated with waste heat at 110℃ and 130℃, the energy consumption for desorption can be reduced by a factor of 38.5% and 53.2%, respectively. Dryer performance aspect: as the relative humidity is reduced from 85% to 20%, the dry performance could be improved the drying rate by a factor of 10.8% and it saved 10.8% of the energy consumption. Using the present device could increase the drying rate by a factor of 45.5% and save 45.3% energy consumption at a temperature of 35℃ and a relative humidity of 85%.
中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
符號說明 XII
第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 6
1-2-1 吸附除濕 6
1-2-2 熱管熱交換器 10
1-3 論文架構 12
第二章 基本理論與分析 13
2-1 吸附除濕理論 13
2-1-1 濕空氣的性質 13
2-2-2 吸附原理 16
2-2-3 固態吸附劑介紹 17
2-2-4 吸附除濕理論 19
2-2 熱管熱交換器 20
2-2-1 熱管熱交換器簡介 20
2-2-2 熱管熱交換器熱傳理論 22
第三章 實驗設備與方法 25
3-1 整合熱管熱交換器於吸附除濕裝置設計概念 25
3-2 實驗設備 29
3-2-1 進風加熱系統 30
3-2-2 控制及顯示面板 31
3-2-3 實驗測試端 32
3-2-4 數據擷取系統 32
3-2-5 乾燥實驗之測試段設計 38
3-3 實驗方法及條件 40
3-3-1 整合熱管熱交換器於吸附除濕裝置吸附實驗方法與步驟 41
3-3-2 整合熱管熱交換器於吸附除濕裝置脫附實驗方法與步驟 42
3-3-3 乾燥實驗方法與步驟 43
3-4 除濕裝置性能分析 43
3-5 不準度分析 45
第四章 實驗結果與討論 50
4-1 吸附實驗性能討論 50
4-1-1 不同環境溫濕度下的實驗結果 50
4-1-2 不同流速下的實驗結果 56
4-2 脫附實驗性能討論 58
4-2-1 未使用廢熱的性能比較 58
4-2-2 使用廢熱下不同脫附端加熱溫度的比較 61
4-2-3 使用廢熱下不同廢熱溫度的比較 63
4-2-4 使用廢熱下不同環境下的性能比較 65
4-2-5 脫附端低溫狀況下不同流率的性能比較 67
4-2-6 廢熱回收的節能比較 68
4-3 乾燥實驗性能討論 70
第五章 結論與未來展望 73
5-1 結論 73
5-2 未來展望 75
參考文獻 76
[1]ASHRAE, Standard 55-2013 -- Thermal Environmental Conditions for Human Occupancy, ASHRAE, 2013
[2]中央氣象局, 1981至2010年相對濕度統計資料, http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_rh.htm
[3]中央氣象局, 近三年天氣觀測數據, http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
[4]吳國隆, 冬季濕度影響健康(養生百科), 人民日報海外版第十二版, 2001
[5]經濟部能源委員會, 固體除濕輪, 經濟部能委會, 1991
[6]Ahlem Zouaoui, Leila Zili-Ghedira, Sassi Ben Nasrallah, Open solid desiccant cooling air systems:A review and comparative study, Renewable and Sustainable Energy Reviews, Vol. 54, pp. 889-917, 2016
[7]Muhammad Sultan, Ibrahim I. El-Sharkawy, Takahiko Miyazaki, Bidyut BaranSaha, Shigeru Koyama, An overview of solid desiccant dehumidification and air conditioning systems, Renewable and Sustainable Energy Reviews, Vol. 46, pp. 16-29, 2015
[8]周沐賢, 高溫再生之週期式全熱交換器性能研究, 國立臺灣大學, 碩士論文, 2012
[9]D. La, Y.J. Dai, Y. Li, R.Z. Wang, T.S. Ge, Technical development of rotary desiccant dehumidification and air conditioning A review, Renewable and Sustainable Energy Reviews, Vol. 14, pp. 130-147, 2010
[10]E. B. Miller, Adsorption System, U.S. Patent 1,872,783, 1932
[11]J. E. Ahlberg, Rates of Water Vapor Adsorption from Air by Silica Gel, Industrial and Engineering Chemistry, Vol. 31, pp. 988-992, 1939
[12]O. A. Hougen, W. R. Marshall, Adsorption from a Fluid Stream Flowing Through a Stationary Granular Bed, Chemical Engineering Progress, Vol. 43, No. 4, pp. 197-208, 1947.
[13]C.E. Bullock, J.L. Threlkeld, Dehumidification of moist air by adiabatic adsorption, Trans. ASHRAE, Vol. 72 , pp. 301–313 ,1966
[14]J. B. Rosen, General Numerical Solution for Solid Diffusion in Fixed Beds, Industrial and Engineering Chemistry, Vol. 46, pp. 1590-1594, 1954.
[15]C. R. Antonson, J. S. Dranoff, The Kinetics of Ethane Adsorption on Molecular Sieves, Physical Adsorption Process and Principles, Vol. 63, pp. 61-67, 1967.
[16]R. S. Barlow, Analysis of the Adsorption Process and of Desiccant Cooling Systems-A Pseudo-Steady-State Model for Coupled Heat and Mass Transfer, Solar Energy Research Institute, SERI/TR631-1330, 1982.
[17]R. Haul, H. Stremming, Nonisothermal sorption kinetics in porous adsorbents, Journal of Colloid and Interface Science, Vol. 97, pp. 348-355, 1984
[18]J. Sun, R. W. Besant, Heat and mass transfer during silica gel-moisture interactions, International Journal of Heat and Mass Transfer, Vol. 48, pp.4953-4962, 2005
[19]S. Neti, E.I. Wolfe, Measurements of effectiveness in a silica gel rotary exchanger, Applied Thermal Engineering, Vol. 20, pp. 309-322, March 2000
[20]李振宇, 章國揚, 吳廷濬, 王文博, 除濕空調系統蜂巢式除濕輪系統性能之分析, 中華水電冷凍月刊, 2005年3月
[21]賈春霞, 吳靜怡, 代彥軍, 干燥劑轉輪除濕性能實驗研究, 化學工程, Vol. 34, pp. 4-7, 2006
[22]T.S. Ge, Y.J. Dai, R.Z. Wang, Y. Li, Experimental investigation on a one-rotor two-stage rotary desiccant cooling system, Energy, Vol. 33, pp. 1807-1815, 2008
[23]Osamu Tanaka, An analysis of simultaneous heat and water vapor exchange through a flat paper plate crossflow total heat exchanger, International Journal of Heat and Mass Transfer, Vol. 27, pp. 2259-2265, 1984
[24]Yuan Weixing, Zheng Yi, Liu Xiaoru, Yuan Xiugan, Study of a new modified cross-cooled compact solid desiccant dehumidifier, Applied Thermal Engineering, Vol. 28, pp. 2257-2266, 2008
[25]T.S. Ge, Y.J. Dai, R.Z. Wang, Z.Z. Peng, Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers, Energy, Vol. 35, pp. 2893-2900, 2010
[26]L. Zhang, M. Saikawa, T. Fujinawat, T. Kaidat, K. Hashimoto, Experimental analysis of adsorption and desorption characteristics of a meso-porous silica coated fin-tube heat exchanger, Central Research Institute of Electric Power Industry, 2012
[27]廖威竣, 不同固態除濕劑塗佈熱交換器除濕系統之吸濕效率研究 , 國立勤益科技大學, 碩士論文, 2013
[28]謝長紘, 週期式運轉全熱交換器之吸附材料性能研究, 國立台灣大學, 碩士論文, 2011
[29]Y. Yin, X. Zhang, D. Peng, X. Li, Model validation and case study on internally cooled heated, International Journal of Thermal Sciences, Vol. 48, pp. 1664-1771, 2009
[30]N. Subramanyam, M.P. Maiya, S.Srinivasa Murthy, Application of desiccant wheel to control humidity in air-conditioning systems, Applied Thermal Engineering, Vol. 24, pp. 2777-2788, 2004
[31]C Ratti, Hot air and freeze-drying of high-value foods: a review, Journal of Food Engineering, Vol. 49, pp. 311-319, 2001
[32]黃圳煌, 熱管式熱交換器之設計與分析, 國立高雄應用科技大學, 碩士論文, 2009
[33]R. S. Gaugler, Heat Transfer Devices, U.S. Patent 2,350,348, 1942
[34]G. M. Grover, Evaporation-Condensation Heat Transfer Device, U.S. Patent 3,229,759 , 1963
[35] G. M. Grover, T. P. Cotter, G. F. Erickson, Structure of Very High Thermal Conductance, Journal of applied A: Physics, Vol. 35, pp. 1990-1991, 1964
[36]T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, I. Sanciuc, R. Boggs,  Advanced cooling system using miniature heat pipes in mobile PC, in IEEE Transactions on Components and Packaging Technologies, Vol. 23, pp. 86-90, 2000
[37]Hong Zhang, Jun Zhuang, Research, development and industrial application of heat pipe technology in China, Applied Thermal Engineering, Vol. 23, pp. 1067-1083, 2003
[38]Leonard L. Vasiliev, Heat pipes in modern heat exchangers, Applied Thermal Engineering, Vol. 25, pp. 1-19, 2005
[39]王啟川, 熱交換設計, 五南圖書出版股份有限公司, 2007
[40]R. Moffat, Contributions to the theory of single-sample uncertainty analysis, ASME, Transactions, Journal of Fluids Engineering, 104(2) 250-258, 1982
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊