( 您好!臺灣時間:2023/03/31 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱:旅遊風險知識發現研究 -以旅平險保單資料集為例
論文名稱(外文):On the Travel Risk Knowledge Discovery: A Case Study of Travel Insurance Contract Dataset
外文關鍵詞:Big DataKnowledge DiscoveryTravel InsuranceDataset
  • 被引用被引用:1
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:1
The business of tourism industry has been booming in recent years, and the travel risk is taking into account gradually. How to foresee the risk of travel accident becomes an important issue for the travel industry. The travel risk knowledge acquired by using the knowledge discovery technology can not only help the travel industry business man to prevent the risk events before the accident occurred, but also it can help the travel industry keeping running in the long term. In order to acquire the characteristics of high versus low risk travel groups, this study adopts the classification and regression tree techniques to explore the major/minor factors and values that affect the travel safety from the inbound/outbound travel insurance datasets; so as to elevate the risk sense of traveling and become the reference framework for designing the travel safety insurance policy as well. The results of this work can help the personnel of travel industry to understand the factors and values that affect the travel safety; meanwhile, it can assist the travel industry to take necessary action to avoid the occurring of travel accident, and incorporate the design of travel insurance policies to help the travel industry escaping from the huge losses incurred by travel risk.
摘要 i
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究流程 2
1.3 章節架構 4
1.4 研究限制 5
第二章 文獻探討 6
2.1 知識發現 6
2.2 旅遊風險 6
2.3 資料集與大數據 11
2.4 資料探勘 13
2.5 基因演算法 13
第三章 研究方法 16
3.1 研究架構 16
3.2 研究流程 16
3.3 虛擬變數羅吉斯迴歸樹(EDLRT) 17
第四章 實驗設計與分析 21
4.1 實驗流程 21
4.2 模型建構 24
4.3 實證研究 25
4.3.1 案例2010 25
4.3.2 案例2011 31
4.3.3 案例2012 36
4.3.4 案例2013 41
4.3.5 案例2014 46
4.4 案例分析 50
第五章 結論與建議 53
5.1 結論 53
5.2 建議 53
參考文獻 55
附錄 60

1.Ackoff, R. (1989), ”From data to wisdom”,Journal of Applied Systems Analysis, 16, 3-9.
2.Anderson, B. A.(2006), ”Crisis management in the Australian tourism industry:Preparedness,personnel,and postscript”, Tourism Management, 27, 1290-
3.Beirman, D. (2003), Restoring Tourism Dsetinations in Crisis:A Strategic Marketing Approach,Maryborough:Australia,McPherson’s Printing Group.
4.Blackler, F. (1995), ”Knowledge ,knowledge work and organizations:An overview and analysis”, Organization Studies, 16, 6, 1021-1046.
5.Blackman, D., and Brent W. R. (2008), "Tourism crisis management and organizational learning: The role of reflection in developing effective DMO crisis strategies." , Journal of Travel & Tourism Marketing, 23, 2-4, 45-57.
6.Blackman, D., and Ritchie, B. W. (2009), ” Tourism crisis management, knowledge management and organisational learning.”, Crisis Management in the Tourism Industry: Beating the Odds?, 53.
7.Blackman, D., Kennedy, M., and Ritchie, B. (2011), ”Knowledge management:The missing link in DMO crisis management?”,Current Issues in Tourism, 14, 4, 337-354.
8.Bora, S. P. (2011), ”Data mining and ware housing.”, In Electronics Computer Technology (ICECT), 2011 3rd International Conference on, 1-5.
9.Bounchen, R., and Sungsoo, P. (2002), Knowledge management in hospitality and tourism, New York:The Haworth Hospitality Press.
10.Breiman, L. (2001), ”Random forests”, Machine Learning, 45, 5-32.
11.Breiman, L. (1996), ”Bagging Predictors”, Machine Learning, 24, 123-140.
12.Breiman, L., Friedman J.H.,Olshen, R.A. and Stone, C.J.(1984), Classification and Regression Trees, Wadsworth Belmont.
13.Bussey, J. (2011), ”Seeking safety in clouds”, The Wall Street Journal, September 16, 8.
14.Choo, C.W. (1998), The knowing organization: How organizations use information to construct meaning,create knowledge, and make decisions, New York: Oxford University Press.
15.Chou, P. L., Lin, C. H., Hsu, S. F., and Liu H. H.(2007), ”Applying Self-Organizing Map Network to Analyze Tourism Risk Perception and Travel Insurance:An Empirical Study”, IEEE International Joint Conference on Neural Networks, 323.
16.Cooper, C. (2006), ”Knowledge management and tourism”, Annuals of Tourism Research, 33, 1, 47-64.
17.Cooper, C., Baggio, R., and Scott, N. (2010), ”Network science, A review focused on tourism”, Annals of Tourism Research, 37, 3, 820-827.
18.Deepa, V. K., and Geetha, J. R. R. (2013), ”Rapid development of applications in data mining.”, In Green High Performance Computing (ICGHPC), 2013 IEEE International Conference on, 1-4.
19.Erickson S. and Rothberg H.(2014), ”Big Data and Knowledge Management: Establishing a Conceptual Foundation”, The Electronic Journal of Knowledge Management, 12, 2, 108-116.
20.Faulkner, B. (2001), ”Towards a framework for tourism disaster management”, Tourism Management, 22, 2, 135-147.
21.Faulkner, B., and Vikulov S. (2001), ”Katherine, washed out one day,back on track the next: a post-mortem of a tourism disaster”, Tourism Management,22,4,331-344.
22.Glaesser, D. (2003), ”Crisis management in the tourism industry”, London:Butter
23.Gourlay, S. N.(2002), “Tacit knowledge, tacit knowing or behaving?”, In 3rd European organizational knowledge learning and capabilities conference.
24.Han, J., Kamber, M., and Pei, J. (2011), Data mining: concepts and techniques., Elsevier.
25.Hjalager, A.(2002), ”Repairing innovation defectiveness in tourism”, Tourism Management, 23, 465-474.
26.Holland, J. H. (1975), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, U Michigan Press.
27.Hsu, T. H., and Lin, L. Z. (2006), ”Using fuzzy set theoretic techniques to analyze travel risk: An empirical study”, Tourism Management, 27, 968-981.
28.James N. M., and John A. S. (1963), ”Problems in the Analysis of Survey Data, and a Proposal”, Journal of the American Statistical Association, 58, 302, 415-434.
29.Jia Z., Shi Y., Jia Y., and Li D. (2012), ”A Framework of Knowledge Management Systems for Tourism Crisis Management”, Procedia Engineering, 29, 138-143.
30.Kass G. V. (1980), ”An Exploratory Technique for Investigating Large Quantities of Categorical Data”, Applied Statistics, 29, 2, 119-127.
31.Leland, W. (1992), ”Tree Structured Data Analysis: AID,CHAID and CART”, Sawtooth/SYSTAT Joint Software Conference, 1-10.
32.Loh, W. Y.(2008), ”Classification and Regression Tree Methods”, In Encyclopedia of Statistics in Quality and Reliability Ruggeri Kenett and Faltin(eds.),315-323.
33.Maditinos, Z., and Vassiliadis, C. (2008), ” Crises and disasters in tourism industry: happen locally, affect globally In”, Management of International Business and Economics Systems, MIBES Conference, 67-76.
34.Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and ungByers, A. (2011), ”Big data:The next frontier for innovation, competition and productivity”, Mckinsey Global Institute.
35.Mistilis, N.,and Sheldon, P. (2006), ” Knowledge management for tourism crises and disasters”, Tourism Review International, 10, 1-2, 39-46.
36.Mitchell, M. (1998), ”An introduction to genetic algorithms.”, MIT press.
37.Mitroff, I. I. (1988), ”Crisis management:Cutting through the confusion”, Sloan Management Review(Winter), 29, 2, 15-20.
38.Paraskevas A., Altinay L., McLean J., and Cooper C. (2013), ”Crisis knowledge in tourism: types, flows and governance”, Annals of Tourism Research, 41, 130-152.
39.Paraskevas A., and Altinay L. (2013), ”Signal detection as the first line of defence in tourism crisis management”, Tourism Management, 34, 158-171.
40.Pforr, C. (2006), “Tourism in post crisis is tourism in pre-crisis: a review of the literature on crisis management in tourism”.
41.Polanyi, M. (1967), The tacit dimension, New York: Doubleday.
42.Ritchie, B. W. (2004), ”Chaos,crisis and disasters: a strategic approach to crisis management in the tourism industry”, Tourism Management, 25, 6, 669-683.
43.Schultz, P. D., and Seeger, M. W.(1991), ”Corporate centered apologia:Iacocca in defense of chrysler”, Speaker and Cavel, 28, 1/4, 50-60.
44.Schultz, M., and Jobe, L. A. (2001), ”Codification and tacitness as knowledge management strategies: An empirical exploration”, Journal of High Technology Management Research, 12, 139-165.
45.Sellnow, T. L. (1993), ”Scientific argument in organizational crisis communication:The case of exxon”, Argumentation and Advocacy, 30, 1, 28-43.
46.Shih, Y. S. and Tsai, H. W. (2004), ”Variable selection bias in regression trees with constant fits”,Computational Statistics and Data Analysis, 45, 595-607.
47.Sukumar, S. R. and Ferrell, R. K. (2013), ”Big Data’collaboration: Exploring, recording and sharing enterprise knowledge”, Information Services & Use, 33, 257-270.
48.Timofeev, R. (2004), ”Classification and regression trees (cart) theory and applications.”
49.Trifan, M., Ionescu, B., Ionescu, D., Prostean, O., and Prostean, G. (2008), ”An ontology based approach to intelligent data mining for environmental virtual warehouses of sensor data.”, In Virtual Environments, Human-Computer Interfaces and Measurement Systems, 2008. VECIMS 2008. IEEE Conference on, 125-129.
50.Tsou, C. M.,Chi S. P., and Huang D. Y. (2010), ”EDLRT: Entropy-based dummy variables logistic regression tree”, Intelligent Data Analysis, 14, 6, 683-700.
51.Vance, A. (2011a), ”The data knows”, Bloomberg Businessweek, September 12, 70-74.
52.Vance, A. (2011b), ”The power of the cloud”, Bloomberg Businessweek, March 7, 52-59.
53.Wang, J.(2007), “Organizational Learning and Crisis Management.”, Online Submission : http://eric.ed.gov/? id=ED504551, retrieve date: 2015/12/28.
54.Weidenfeld, A., Williams, M. A., and Buter,W. R. (2010), ”Knowledge transfer and innovation among attractions”, Annals of Tourism Research, 37, 3, 604-626.
55.Witten, I. H., and Frank, E. (2000), Data Mining: Practical Machine Learning Tools with Java Implementations, San Francisco: Morgan Kaufmann.
56.Xiao, H., and Smith, S. L. J.(2007), ”The use of tourism knowledge:Research propositions”, Annals of Tourism Research, 34, 2, 310-331.
57.Xie Y., Student Member,IEEE, Gunter Schreir, Senior Member, IEEE ,David C.W. C., Sandra Neubauer,Stephen J. Redmond, Senior Member, IEEE, Nigel H. L., Fellow, IEEE (2014), ”Predicting Number of Hospitalization Days Based on Health Insurance Claims Data using Bagged Regression Trees”, Annual International Conference of the IEEE, 2706-2709.
58.Yuan, Q. F., Yoon,P.C., and Helander, M. G. (2006), ”Knowledge identification and management in product design”, Journal of Knowledge Management, 10, 6, 50-63.
59.Zhang D., Zhou L., and Jay F. N. J. (2002), ”A Knowledge Management Framework for the Support of Decision Making in Humanitarian Assistance/Disaster Relief”, Knowledge and Information Systems, 4, 370-385.

第一頁 上一頁 下一頁 最後一頁 top