跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃騫毅
研究生(外文):Huang, Chien-Yi
論文名稱:利用Kinect感測器實現機器手臂跟隨使用者動作之系統設計
論文名稱(外文):Robotic Arm Control Using Kinect Camera
指導教授:陳慶逸陳慶逸引用關係
指導教授(外文):Chen, Ching-Yi
口試委員:李棟良駱樂
口試委員(外文):Lee, Dong-LiangLuoh, Leh
口試日期:2016-07-26
學位類別:碩士
校院名稱:銘傳大學
系所名稱:電腦與通訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:71
中文關鍵詞:機器手臂Kinect逆運動學ANFIS
外文關鍵詞:Robotic armKinectInverse KinematicsANFIS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了取代日益提升的人工成本,產業界對於製造自動化的需求愈來愈高。機器手臂可以在惡劣環境下完成人力所難以長時間勝任之工作;因此,在工業製造的生產過程中,使用機器手臂可以降低人力成本、有效提升產品產能與良率、與減低慢性職災發生的可能性;但對於少量多樣的客製化產品生產而言,人工仍比機器人更具彈性與智慧,也是較有效率的選擇。也因此,研究如何提升機器手臂的易使用性與智慧自主能力,進而提升彈性與易使用性是機器手臂工業的重點研發項目之一。目前機器手臂的應用大部分是靠工程師進行移動路徑編輯,然後實際投產並在線上調整參數。為了降低線上運作的開發難度與開發時間,本計畫將實現一個利用Kinect 感測器來控制機器手臂移動路徑的架構,透過人體骨架影像的偵測,操作者便能透過手掌直覺地引導機器手臂之動作跟隨,達到示範教導的目的。此外,為了提升運動控制的性能,在本論文中我們也利用ANFIS進行機器手臂之逆運動學建模,以實現機器手臂從工作變數空間到關節變數的非線性映射,以解決求解逆運動學之繁複公式推導並且增強其適用的程度。
To replace the increasing labor cost, a growing demand for manufacturing automation has been concerned in industry. In contrast to human labors, a robotic arm is more capable of working in harsh environments for a long time; therefore, using robotic arms in the process of industrial manufacturing could lower labor costs, increase the productivity and quality, and reduce the occurrence of occupational injury. Comparing to using robotic arms, manual production is more of an efficient approach which shows more flexibility and intelligence when it comes to customization for a small volume, large-variety production. Therefore, the study aims to improve robotic arms in terms of the ease of use and intelligent autonomy, which is one of the key R&D projects of the industrial robotic arms to enhance the flexibility and the ease of use. Currently, the application of robotic arms is mostly controlled by engineers for path movements and thus put into operation with online parameters adjustment. In order to reduce the difficulty and time of online operation, this study implemented a Kinect sensor to control the structure of robotic arms’ moving paths. Through the detection of human skeleton image, the operator will be able to use palms intuitively guiding the action of robotic arms to achieve the purpose of teaching demonstration. In addition, this study used ANFIS on robotic arms for inverse kinematics modeling in order to enhance the performance of motion controls and to make a change in robotic arms from working space variables to nonlinear mapping of joint variables in a hope to have a resolution for the complicated formula derivation of inverse kinematics to enhance the degree of its application.
摘要 ii
ABSTRACT iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 3
1.2.1 機器手臂的視覺導引 3
1.2.2 Kinect相關應用與結合機器手臂相關文獻 8
1.2.3 機器手臂的逆運動學求解問題 9
1.3 論文組織 10
第二章 硬體介紹 11
2.1 硬體架構 11
2.2 Kinect體感攝影機 11
2.2.1 Kinect硬體規格 11
2.2.2 骨架原理概述 13
2.3 機器手臂控制器 14
2.4 機器手臂介紹 15
第三章 研究方法 18
3.1 機器手臂運動學 18
3.1.1 旋轉矩陣 18
3.1.2 齊次轉換矩陣 19
3.1.3 Denavit-Hartenberg描述法 20
3.1.4 正向運動學 21
3.1.5 逆向運動學 23
3.2 卡爾曼濾波器 24
3.3 均值濾波器 28
3.4 適應性類神經-模糊推論系統 31
第四章 實驗結果與分析 34
4.1 實驗環境 34
4.2 實驗結果 34
4.3 利用ANFIS進行逆運動學建模 51
第五章 結論 58
參考文獻 59


[1]陳慶逸,「結合RGB-D影像與演化式學習方法於機器手臂之直覺式運動控制」,技術報告,2015年。
[2]經濟部工業局,「智慧型自動化產業發展方案」,2012年。
[3]John MacCormick, http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf
[4]陳慶逸,「融合RGB影像與深度影像之手勢辨識研究」,技術報告,2015年。
[5]Alexandros Doumanoglou, Stylianos Asteriadis, Dimitrios S. Alexiadis, Dimitrios Zarpalas, Petros Daras, “A dataset of Kinect-based 3D scans”, IEEE 11th IVMSP Workshop, 2013.
[6]Joshua Fabian, Tyler Young, James C. Peyton Jones, Garrett M. Clayton, “Integrating the Microsoft Kinect With Simulink: Real-Time Object Tracking Example”, IEEE/ASME Transactions on Mechatronics, Vol. 19, Issue 1, 2014.
[7]Chung-Liang Lai, Ya-Ling Huang, Tzu-Kuan Liao, Chien-Ming Tseng, Yung-Fu Chen, D. Erdenetsogt, “A Microsoft Kinect-Based Virtual Rehabilitation System to Train Balance Ability for Stroke Patients”, International Conference on Cyberworlds (CW), 2015.
[8]Jagdish L. Raheja, Ankit Chaudhary, Kunal Singal, “Tracking of Fingertips and Centers of Palm Using KINECT”, Third International Conference on Computational Intelligence, Modelling & Simulation, 2011.
[9]L. Pigel, W. Tiller, “The Nurbs Book”, Monograph in Visual Communication, Springer-Verleg, 1997.
[10]Rizqa Afthoni, Achmad Rizal, Erwin Susanto, “Proportional Derivative Control Based Robot arm System Using Microsoft Kinect”, IEEE International Conference on Robotics, Biomimetics, and Intelligent Computational Systems (ROBIONETICS), 2013.
[11]R. P. Paul, B. Shimano, and G. Mayer, “Kinematic Control Equations for Simple Manipulators”, IEEE Trans. on Systems. Man. And Cybernetics, vol. SMC-11, No. 6, 1981.
[12]L. Tsai and A. Morgan, “Solving the Kinematics of the most General Six- and Five-degree-of-freedom Manipulators by Continuation Methods”, Paper 84-DET-20, ASME Mechanisms Conference, Boston, MA, 1984.
[13]P. H. Chang, “A Closed Form Solution for Inverse Kinematics of Robot Manipulator with Redundancy”, IEEE journal of robotics and automation, Vol. RA-3, no. 5, 1987, pp. 393-403.
[14]C. S. G. Lee and M. Ziegler, “A Geometrical Approach in Solving the Inverse Kinematics of PUMA Robots”, Conference Proceedings, 13th International Symposium on Industrial Robots and Robots 7, Soc, Mfg. Engrs, Chicago, IL, 1983, pp. 16-1-16-18.
[15]Saleh Tabandeh ,Christopher Clark, William Melek, “A Genetic Algorithm Approach to solve for Multiple Solutions of Inverse Kinematics using Adaptive Niching and Clustering”, IEEE Congress on Evolutionary Computation, 2006 pp.1815-1822.
[16]A.T. Hasan, A.M.S. Hamouda, N. Ismail and H.M.A.A. Al-Assadi, “An adaptive learning algorithm to solve the inverse kinematics problem of a 6 DOF serial robot”, Advances in Engineering Software, Vol. 37, 2006, pp. 432–438.
[17]R. Mayorga and P. Sanongboon, “An Artificial neural network approach for inverse kinematics computation and singularities prevention of redundant robots”, Journal of Intelligent and Robotic Systems, Vol. 44, 2005, pp. 1–23.
[18]D. W. Howard and A. Zilouchian, “Application of Fuzzy Logic for the Solution of Inverse Kinematics and Hierarchical Controls of Robotic Manipulators”, Journal of Intelligent and Robotic Systems, Vol. 23, 1998, pp. 217-247.
[19]M.T.H. Baheshti, A.K. Tehrani and B. Ghanbari, “An optimized adaptive fuzzy inverse kinematics solution for redundant robots”, Proceedings of the International Symposium on Intelligent Control, Houston ,TX, USA, 2003, pp. 924–929.
[20]V. K. Banga, Y. Singh, and R. Kumar , “Simulation of Robotic Arm using Genetic Algorithm & AHP”, International Journal of Intelligent Systems and Technologies 2, 2007, pp.93-98.
[21]Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, and Andrew Blake, “Real-Time Human Pose Recognition in Parts from Single Depth Images”, CVPR, 2011.
[22]J. Denavit, R.S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices”, Trans ASME J. Appl. Mech., Vol. 23, pp.95-100.
[23]John J. Craig, “Introduction to Robotics: Mechanics and Control”, Boston, MA: Addison-Wesley, 1986.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top