跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫建雄
研究生(外文):SUN, CHING-HSIUNG
論文名稱:對低溫非晶氧化物半導體(α-IGZO)薄膜電晶體使用有機鈍化層之研究
論文名稱(外文):Stability of amorphous InGaZnO TFTs using an organic passivation layer
指導教授:陳啟文陳啟文引用關係
指導教授(外文):CHEN CHII-WEN
口試委員:楊信佳賴信誠
口試委員(外文):YANG HSIN-CHIALAI HSIN-CHENG
口試日期:2017-08-29
學位類別:碩士
校院名稱:明新科技大學
系所名稱:積體電路佈局產業碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:55
中文關鍵詞:非晶氧化物薄膜(a-IGZO)有機鈍化層穩定度可撓式
外文關鍵詞:a-IGZO TFTorganic passivationstabilityflexible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了實現高效能之透明顯示器亦或可撓式顯示器,使用非晶氧化物半導體(a-IGZO)薄膜電晶體,是一種提升及取代傳統非晶矽薄膜電晶體製程的方法。本論文首先調整薄膜電晶體製程參數製作出遷移率10~15 cm2/V-s之有機絕緣層薄膜電晶體於玻璃基板製程。其後,製作使用有機鈍化層之薄膜電晶體,可有效阻絕環境變因,穩定元件品質。將有機鈍化層之薄膜電晶體製程整合至可撓式基板,遷移率可自0.55 cm2/V-s提升至1.28cm2/V-s。
Recently, studies on transparent oxide thin film transistors have attract a lot interesting because of high mobility and high aspect ratio in display applications. Among all oxide semiconductors, amorphous indium gallium zinc oxide (a-IGZO) TFTs is fast developed. This material shows excellent properties as a TFT for display. The a-IGZO could be growth in the low temperature in amorphous from exhibit over 10 cm2/Vs electron mobility with very uniform distributions. This value is much higher than a-Si:H in current active matrix LCD. In this thesis, we study using an organic passivation layer for a-IGZO Thin Film Transistors. The TFT performance wasexhibit 10~15 cm2/V-s of mobility.Withorganic passivation layer can improve the device stability. a-IGZO TFTs using an organic passivation layer processed on flexible PEN substrate the mobility upgrade from 0.55 to 1.28 cm2/V-s. Furthermore, we pave a way for future high performance and flexible display.
摘要 .........................................2
Abstract.........................................3
誌謝 .........................................4
目錄 .........................................5
表目錄 .........................................6
圖目錄 .........................................7
第一章 緒論 .................................9
1.1 前言 .................................9
1.2 研究動機 .................................9
第二章 文獻探討 ................................10
2.1 文獻簡介 ................................10
第三章 實驗方法與步驟 ........................12
3.1 實驗流程 ................................12
3.2 基板清洗 ................................13
3.3 鍍製電極 ................................14
3.3.1 熱蒸鍍系統 ................................14
3.4 絕緣層與鈍化層溶液調配與製作 ................15
3.4.1 絕緣層溶液製作 ........................16
3.4.2 鈍化層溶液製作 ........................16
3.5 通道層沉積 ................................17
3.5.1 射頻磁控濺鍍系統 ........................17
3.6 測量分析 ................................19
3.6.1 ID-VGS特性曲線 ........................19
3.6.2 ID-VDS特性曲線 ........................21
3.6.3 IG-VGS特性曲線 ........................25
3.6.4電容值參數萃取 ........................25
第四章 實驗結果與討論 ........................26
4.1 實驗參數萃取 ........................26
4.2 有機鈍化層之a-IGZO TFT製程 ................33
4.3 穩定度Stability實驗 ........................40
4.3.1 a-IGZO薄膜電晶體穩定度量測 ................40
4.3.2 a-IGZO薄膜電晶體PVP/PMF鈍化層結構穩定度量測 43
4.3.3 a-IGZO薄膜電晶體PVP鈍化層結構穩定度量測 46
第五章 結論 ................................52
參考文獻 ........................................53




[1] Wantae Lim, Jung Hun Jang, S.-H. Kim, D. P. Norton, V Craciun, S. J. Pearton,_F. Ren, and H. Shen, “High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates,” Applied physics letters, vol. 93, pp. 082102, 2008.
[2] Jin-Seong Park, Jae Kyeong Jeong,a Yeon-Gon Mo, and Hye Dong Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Applied physics letters, vol. 90, pp. 262106, 2007.
[3] Jaechul Park, Sangwook Kim, Changjung Kim, Sunil Kim, Ihun Song, Huaxiang Yin, Kyoung-Kok Kim, Sunghoon Lee, Kiha Hong, Jaecheol Lee, Jaekwan Jung, Eunha Lee, Kee-Won Kwon, and Youngsoo Park, “High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation,” Applied physics letters, vol. 93, pp. 053505, 2008.
[4] Hideo Hosono,_Toshio Kamiya, and Masahiro Hirano, “Function cultivation of transparent oxides utilizing built-in nanostructure,” Bulletin of the Chemical Society of Japan, vol. 79, pp. 1-24, 2006.
[5] Toshio Kamiya and Hideo Hosono, “Creation of new functions in transparent oxides utilizing nanostructures embedded in crystal and artificially encoded by laser pulses,” Semiconductor science and technology, vol. 20, pp. S92-S102, 2005.
[6] Hideo Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of non-crystalline solids, vol. 352, pp. 851-858, 2006.
[7] Mitsuru Nakata, Kazushige Takechi, Toshimasa Eguchi,Eisuke Tokumitsu, Hirotaka Yamaguchi, and Setsuo Kaneko, “ Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing, ”Japanese Journal of Applied Physics, 48,081607, 2009.
[8] Veres J, Ogier S, Lloyd G, et al., "Gate insulators in organic field-effect transistors ",CHEMISTRY OF MATERIALS, Volume:16,Issue:23,pp: 4543-455,NOV 2004
[9] Klauk H, Halik M, Zschieschang U, et al." High-mobility polymer gate dielectric pentacene thin film transistors ", JOURNAL OF APPLIED PHYSICS, Volume: 92,Issue: 9,pp: 5259-5263,NOV 2002
[10] Hwang DK, Lee K, Kim JH, et al."Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors", APPLIED PHYSICS LETTERS, Volume: 89,Issue: 9,Article Number: 093507,AUG 2006
[11] Hisato Yabuta, Masafumi Sano, Katsumi Abe, Toshiaki Aiba, Tohru Den, Hideya Kumomi, Kenji Nomura, Toshio Kamiya and Hideo Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4channel fabricated by room temperature rf-magnetron sputtering,” Applied physics letters, vol. 89, pp. 112123, 2006.
[12] Jae Kyeong Jeong, Jong Han Jeong, Hui Won Yang, Jin-Seong Park, Yeon-Gon Mo, and Hye Dong Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Applied physics letters, vol. 91, pp. 113505, 2007.
[13] Hsing-Hung Hsieh, Cheng-Han Wu, and Chung-Chih Wu, “Amorphous In2O3-Ga2O3-ZnO Thin Film Transistors and Integrated Circuits on Flexible and Colorless Polyimide Substrates,” Society for Information Display (SID), pp. 1207-1210, 2008.
[14] Hsing-Hung Hsieh, Toshio Kamiya, Kenji Nomura, Hideo Hosono,_and Chung-Chih Wu, “Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states,” Applied physics letters, vol. 92, pp. 133503, 2008.
[15] Jong H. Na, M. Kitamura and Y. Arakawa, “High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes,” Applied physics letters, vol. 93, pp. 063501, 2008.
[16] M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin, N. Sekine, “Application of amorphous oxide TFT to electrophoretic display,” Journal of Non-Crystalline Solids, vol. 354, pp. 2777-2782, 2008.
[17] Jin-Seong Park, Jae Kyeong Jeong, Hyun-Joong Chung, Yeon-Gon Mo, and Hye Dong Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Applied physics letters, vol. 92, pp. 072104, 2008.
[18] J Minkyu Kim, Jong Han Jeong, Hun Jung Lee, Tae Kyung Ahn, Hyun Soo Shin, Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, and Hye Dong Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Applied physics letters, vol. 90, pp. 212114, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top