跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮氏水
研究生(外文):Nguyen Thi Thuy
論文名稱:整合購買意願模型與科技接受模型探討智慧型手機購買意願 - 以越南地區為例
論文名稱(外文):Integrating the Purchase Intention Model and Technology Acceptance Model to explore the purchase intention of smart phone: the Perspective of Viet Nam
指導教授:王貴英王貴英引用關係
指導教授(外文):KueiIng Wang
口試委員:謝志宏李漢宗
口試日期:2015-10-23
學位類別:碩士
校院名稱:明新科技大學
系所名稱:管理研究所碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:46
外文關鍵詞:Purchase Intention Model(PIM)Technology Acceptance Model(TAM)purchase intentionself-efficacy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:580
  • 評分評分:
  • 下載下載:251
  • 收藏至我的研究室書目清單書目收藏:2
Smart phones market is one of the most turbulent market environments today due to increasing competition and change. Moreover, technology adoption has been the topic of several studies. Therefore, we integrated two models hence Purchase Intention Model (PIM) and Technology Acceptance Model (TAM) to study smart phone acceptance and adoption. Combining those two models or theories is not a new idea; however, some empirical researches show that self efficacy affects TAM construct most. Self-efficacy is added to this study’s model to investigate the factor affecting purchase intention of smart phone in Viet Nam. It is hope to prove the relationship between perceived price with purchasability and social influence affect in perceived need. The survey was conducted in Vietnam where smart phone market has been developing rapidly.
Structure equation modeling (SEM) was used to examine eight hypotheses and data analysis was performed using the PLS (Partial Least Square) method. The total valid samples were 187 respondents .The result of this study shows that three of the eight hypotheses were not supported. This study confirmed purchasability and perceived usefulness were significant influencing purchase intention. Moreover, perceived price and perceived usefulness were two factors which had the most significant influences on purchase intention. It implies that the smart phone companies should pay attention to the price when investing Vietnam’s smart phone market. The implication of this work to both researcher and practitioner are discussed.
Abstract ...................................................................................................................................................... i Table of Contents ...................................................................................................................................... ii List of figure............................................................................................................................................. iii List of table .............................................................................................................................................. iii 1 Introduction ............................................................................................................................................ 1
1.1 Research Background ................................................................................................................. 1
1.2 Motivation ................................................................................................................................... 2
1.3 Research objective ...................................................................................................................... 5 2. Literature Review .................................................................................................................................. 7
2.1 Mobile Commerce....................................................................................................................... 7 2.2 Technology Acceptance Model ................................................................................................... 7
2.3 Purchase Intention Model ......................................................................................................... 12
2.4 Perceived need .......................................................................................................................... 13
2.5 Social influences ....................................................................................................................... 15
2.6 Perceived price and Purchasability ........................................................................................... 17
2.7 Self- efficacy ............................................................................................................................. 17
2.8 Purchase intention ..................................................................................................................... 18 3. Research model and hypothesis .......................................................................................................... 21
3.1 Research model ......................................................................................................................... 21
3.2 Hypothesis ................................................................................................................................. 21
3.3 Sampling and data collection .................................................................................................... 24
3.4 Demographic analysis ............................................................................................................... 25
3.5 Constructs and Measurements .................................................................................................. 26
3.6 Measurement Model ................................................................................................................. 27 4 Analysis and discussion ....................................................................................................................... 31
4.1 Data Analysis ............................................................................................................................ 31
4.2 Discussion ................................................................................................................................. 32 5 Conclusions and Discussions ............................................................................................................... 35
5.1 Conclusion ................................................................................................................................ 35
5.2 Academic implication ............................................................................................................... 36
5.3 Practical implication ................................................................................................................. 36
5.4 Limitation and suggestion for future study ............................................................................... 37 Reference ................................................................................................................................................ 38 Appendix ................................................................................................................................................. 44
iii
List of figure Figure 1 Smartphone shipments by operating system ............................................................... 2
Figure 2 Fastest growing iOS and Android markets .................................................................. 4
Figure 3 Theory of Reasoned Action ......................................................................................... 8
Figure 4 Technology Acceptance Model .................................................................................. 9
Figure 5 Purchase Intention Model ............................................................................................ 13
Figure 6 Research Model ........................................................................................................... 21
Figure 7 Structure Model and Path coefficient .......................................................................... 31
List of table
Table1 Sample Demographic ................................................................................................... 20
Table 2 Operational Definition..................................................................................................... 26
Table 3 Result of Factor Analysis ............................................................................................. …28
Table 4 Discriminate validity .................................................................................................. … 30
Table 5 Result of structure model ............................................................................................. …34
1.Ahtola, O. T. (1984). Price as a ‘give’ component in an exchange theoretic multicomponent model. Advances in consumer research, 11(1), 623-636.
2.Bandura, A. (1982). Self-efficacy mechanism in human agency. American psychologist, 37(2), 122.
3.Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology studies, 2(2), 285-309.
4.Berman, B. (1996). Marketing channels. John Wiley & Sons Inc.
5.Chen, K., Chen, J. V., & Yen, D. C. (2011). Dimensions of self-efficacy in the study of smart phone acceptance. Computer Standards & Interfaces, 33(4), 422-431.
6.Choi, J., & Geistfeld, L. V. (2004). A cross-cultural investigation of consumer e-shopping adoption. Journal of Economic Psychology, 25(6), 821-838.
7.Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.
8.Danziger, P. (2004). Why people buy things they don't need: understanding and predicting consumer behavior. Dearborn Trade Publishing.
9.Davis Jr, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
10.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
11.Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International journal of man-machine studies, 38(3), 475-487.
12.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
13.Davis, F.D. (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology.MIS Quarterly, 13, 318–339.
14.Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. The journal of abnormal and social psychology, 51(3), 629
15.Dillion, A., & Morris, M. G. (1996). User acceptance of information technology: Theories and models. Annual Review of Information Science and Technology, 31, 3-32.
16.Dodds, W. B., Monroe, K. B., & Grewal, D. (1991), Effect of price, brand and store information on buyers’ product evaluations. Journal of Marketing Research, 28(3), 307-319.;
17.Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1995). Consumer Behavior, Chicago.
18.Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley:)
19.Torkzadeh G., Koufteros X., Factorial validity of a computer self-efficacy scale and the impact of computer training, Educational and Psychological Measurement 55
20.Gunasekaran, A., & Ngai, E. (2003). Special issue on mobile commerce: strategies, technologies and applications. Decision Support Systems, 35, 187-188.
21.Ho Cheong, J., & Park, M. C. (2005). Mobile internet acceptance in Korea.Internet research, 15(2), 125-140.
22.Jamieson, L. F., & Bass, F. M. (1989). Adjusting stated intention measures to predict trial purchase of new products: A comparison of models and methods. Journal of Marketing Research, 336-345.
23.Moon Ji‐Won, Kim Young‐Gul.(2001). “Extending the TAM for a World‐Wide‐Web context” Information &Management, 38, 217–230
24.Hong K.. (2013). Smartphone Sales Surge 61% in Southeast Asia,Android Dominates with 72%Share.Thenextweb.[Online].Available:http://thenextweb.com/asia/2013/12/02/report-smartphone-sales-surge-61-in-southeast-asia-android-dominates-with-72-share/#!sRWy6
25.King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management, 43(6), 740-755.
26.Lee, C., & Green, R. T. (1991). Cross-cultural examination of the Fishbein behavioral intentions model. Journal of international business studies, 289-305.
27.Leonard-Barton, D., & Deschamps, I. (1988). Managerial influence in the implementation of new technology. Management science, 34(10), 1252-1265.
28.Koufaris M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior, Information Systems Research 13(2), pp. 205–223.
29.Mathieson, K. (1991) Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2, 173–191
30.Mazumdar, T. (1986). Experimental investigation of the psychological determinants of buyers’ price awareness and a comparative assessment of methodologies for retrieving price information from memory working paper, Virginia Polytechnic Institute and State University.
31.Monroe, K. B., & Krishnan, R. (1985). The effect of price on subjective product evaluations. Perceived quality, 1, 209-232.
32.Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.
33.Morwitz, V. G., & Schmittlein, D. (1992). Using segmentation to improve sales forecasts based on purchase intent: Which" intenders" actually buy?. Journal of Marketing Research, 391-405.
34.Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Intentions to use mobile services: Antecedents and cross-service comparisons. Journal of the academy of marketing science, 33(3), 330-346.
35.Ong, C. S., Lai, J. Y., & Wang, Y. S. (2004). Factors affecting engineers’ acceptance of asynchronous e-learning systems in high-tech companies. Information & management, 41(6), 795-804.
36.Park, Y., & Chen, J. V. (2007). Acceptance and adoption of the innovative use of smartphone. Industrial Management & Data Systems, 107(9), 1349-1365.
37.Povey, R., Conner, M., Sparks, P., James, R., & Shepherd, R. (2000). Application of the Theory of Planned Behaviour to two dietary behaviours: Roles of perceived control and self‐efficacy. British Journal of Health Psychology, 5(2), 121-139.
38.Ratchford, B. T., & Vaughn, R. (1989). On the relationship between motives and purchase decisions: Some empirical approaches. Advances in Consumer Research, 16(1), 293-299.
39.Rivis, A., & Sheeran, P. (2003). Descriptive norms as an additional predictor in the theory of planned behaviour: A meta-analysis. Current Psychology, 22(3), 218-233.
40.Rogers, E. M. (1983). Difiusion of innovations. New York: Free Press, 18(20), 271.
41.Schiffman, L. G., & Kanuk, L. L. (2000). Consumer Behaviour, 7th ed
42.Shih, G., & Shim, S. Y. (2002). A service management framework for m-commerce applications. Mobile Networks and Applications, 7, 199-212.
43.Sirohi, N., McLaughlin, E. W., & Wittink, D. R. (1998). A model of consumer perceptions and store loyalty intentions for a supermarket retailer. Journal of retailing, 74(2), 223-245.
44.Spears, N., & Singh, S. N. (2004). Measuring attitude toward the brand and purchase intentions. Journal of Current Issues & Research in Advertising,26(2), 53-66.
45.Sukhminder S. Grewal,, and Russell Danziger. "Web-based method and system for indicating expert availability." U.S. Patent 6,829,585, issued December 7, 2004.
46.Levine T. (1997). Commitment to learning: effects of computer experience, confidence and attitudes, Journal of Research on Computing in Education 17,83–105.
47.Tang, J., Sun, J., Wang, C., & Yang, Z. (2009). Social influence analysis in large-scale networks. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining ,807-816.
48.Taylor, S. and Todd, P.A. (1995), Assessing IT Usage: The Role of Prior Experience, MIS quarterly,Vol.19, 561‐570
49.Tsalgatidou, A., & Pitoura, E. (2001). Business models and transactions in mobile electronic commerce: requirements and properties. Computer Networks, 37(2), 221-236
50.Venkatesh V. (2000). Determinates of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model, Information Systems Research 11(4), 342–365
51.Valiente, P., & van Heijden, H. (2002). A method to identify opportunities for mobile business processes. Proc. Working paper series in Business administration stockholm school of economics.
52.Wang, Y. S., Lin, H. H., & Luarn, P. (2006). Predicting consumer intention to use mobile service. Information Systems Journal, 16(2), 157-179.
53.Warshaw, P. R. (1980). A new model for predicting behavioral intentions: An alternative to Fishbein. Journal of Marketing Research, 153-172.
54.Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & management, 42(5), 719-729.
55.Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & management, 42(5), 719-729.
56.Zeithaml, V. A. (1982). Consumer response to in-store price information environments. Journal of Consumer Research, 357-369.
57.Zeithaml, V. A. (1988), Consumer perceptions of price, quality and value: a means-end model and synthesis of evidence. Journal of Marketing, 52, 2-22.
58.Zeithaml, V. A., & Berry, L. (1987). The time consciousness of supermarket shoppers. In Texas A&M University Working paper.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文