跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳皆正
研究生(外文):CHEN, CHIEH-CHENG
論文名稱:以第一原理計算分析鋁/鎵雙摻雜於氧化鋅光電性質之影響與實驗驗證
論文名稱(外文):Electronic structure and optical property analysis of Al/Ga-codoped ZnO through first-principles calculations and experimental verification
指導教授:吳鉉忠
指導教授(外文):WU, HSUAN-CHUNG
口試委員:黃啟賢郭錦龍
口試委員(外文):HUANG, CHI-HSIENKUO, CHIN-LUNG
口試日期:2016-07-27
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:108
中文關鍵詞:密度泛函理論鋁/鎵共摻氧化鋅電子結構光學性質
外文關鍵詞:DFTAl/Ga-codoped ZnOelectronic structureoptical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用Materials Studio 8.0軟體進行材料模擬,並採用密度泛函理論加Hubbard U (DFT+U) 方法研究Al/Ga元素雙摻可能出現的位置、Al/Ga不同濃度和不同氧空缺濃度於ZnO,並研究其光電性質。計算結果顯示純ZnO的晶格常數與實驗量測之差小於1 %,且所計算的能隙非常符合實驗值(3.3 eV)。
對於Al/Ga不同雙摻雜不同位置於ZnO時其研究結果顯示,形成能計算結果顯示雙摻結構為Als(Zn)Gas(Zn)是最容易形成,而雙摻結構中有置換氧的則是最不易形成。並從雙摻的晶格常數發現當Al/Ga形成間隙型時造成晶格扭曲並使體積上升,而Al/Ga摻雜位置為置換鋅與間隙型皆會在導帶底產生電子佔據並使光學能隙擴大。製程中在貧氧條件下使置換氧形成機會提高,會在價帶上方產生佔據態,使光學能隙縮小並使紫外光波長下平均穿透率下降。由能態密度圖可得知形成置換氧與間隙型會產生較高的載子濃度,但於能隙中產生深層能級影響其穿透率。相比於不同摻雜位置下AlS(Zn)GaS(Zn)擁有最小的有效質量,且光學能隙擴大且沒有深施體能階生成,紫外光和可見光平均穿透率高達72.3與90.85%,而其它的雙摻位置都造成穿透率下降。
對於Al/Ga不同摻雜濃度形成能結果發現,Al/Ga各摻雜一顆時有著最低的形成能。當Al/Ga摻雜濃度提高後形成能隨之增加,意謂Al/Ga若要以置換鋅的位置存在於ZnO會顯得更為困難。優化結構中提升Ga濃度其晶格常數a與c軸上升,造成其體積增加。若是增加Al濃度則會使a軸下降造成體積縮小。Al-O的鍵長會比Ga-O的鍵長來的小,從Atomic population中得知Al所丟出的電子比Ga來得多,且Al-O的Bond population比Ga-O還來的大,這說明了置換Al會比置換Ga來得更顯共價鍵特性。從DOS中得知Ga濃度的提升比其Al更有助於載子濃度的提升,於相同摻雜濃度下Ga元素是主要自由載子來源。隨著摻雜濃度的提升,施體能階的能量範圍擴大、貢獻增高,光學能隙值也隨之增大造成本質吸收邊產生藍位移,提高了UV波長下的穿透率。當Al/Ga濃度增加時於導帶底部電子佔據態增加,造成近紅外光波長下的吸收產生。
對於不同氧空缺濃度存在於AGZO對光電性質的影響,從形成能結果顯示若要減少AGZO中的氧空缺,在製程時於富氧的條件下較容易達成。氧空缺的存在使得晶格常數a與c軸下降並使體積縮小。氧空缺濃度升高會使鋅所丟出的電子減少,但氧所接收到的電子增加,並造成導帶上的未佔據態形狀改變。靠近費米能階部分空帶明顯增多,且對淺層施體能階的吸收有明顯幫助。氧空缺濃度提升會使載子濃度的主要貢獻由淺層轉移至深層。在光學性質上AGZO中氧空缺的出現造成紫外光與可見光下的平均穿透率下降。實驗中也發現同樣現象,當退火時通入氧壓增加,載子濃度隨之下降並造成電阻率的上升。而氧空缺的增加使空帶數目變多,造成長波長下的穿透率下降。除了對計算的光電性質分析外我們也與實驗上的文獻做比較,並提供不同氧空缺濃度存在AGZO下的性質做為一個參考的指標。

Using density functional theory and the Hubbard U (DFT+U) method, we investigated the doped sites and doped ratio of Al/Ga in ZnO. Also, considering the different concentrations of oxygen vacancy defect, we studied the electronic structure and optical properties of AGZO. The difference in lattice constants between the calculated results and experimental measurements is within 1%, and the calculated band gap of pure ZnO is in excellent agreement with experimental values (3.3 eV).
The calculated formation energy for the Al/Ga doped site shows that Als(Zn)Gas(Zn) is most likely to form, while the substitution of oxygen is most difficult. The lattice consistant became distortion and volume expansion when Al/Ga occurs on the interstitial site. The Al/Ga-substituted Zn atoms or interstitial sites in ZnO, which contain electrons occupying an energy level below the conduction band, enlarge the optical band gap. The possibility for Al/Ga substitution for oxygen will increase while processed under oxygen-poor condition. In addition, the electrons occupying an energy level above the valance band lead to narrowing the optical band gap and decreased average transmittance under UV wavelength. The substituted oxygen and interstitial sites have a higher carrier concentration than substituted znic, but the deep occupy state causes reduction in transmittance. Al/Ga-substituted zinc has the smallest effective mass than other doped site, further expanding the optical band gap and having no occupied state in the band gap, and thus having UV and visible wavelength average transmittance of 72.3% and 90.85%, respectively. However, oxygen substitution and interstitial site formation reduces the average transmittance.
The Al/Ga-substituted zinc has the lowest formation energy; the formation energy increases with increase in the doping concentration, which indicates that the formation of Al/Ga-substituted zinc becomes more difficult. The a-axis and c-axis increases with increase in Ga doping concentration, which expands the cell volume. Increase in Al doping concentration causes the c-axis to increase but the a-axis to decrease, which narrows the cell volume. The Al-O bond length is shorter than the Ga-O bond length. Furthermore, the Al atoms throw more electrons than the Ga atoms and the bond population of Al-O is larger than that of Ga-O, which indicates that Al-substituted zinc has more covalent bond behavior. The calculated carrier concentration shows that Ga contributes more free carriers than Al for the same total doped concentration. The shallow donor state energy range expands and the optical band gap enlarges with increased doping concentration. However, the UV wavelength average transmittance increased because of the absorption edge blue shift. In addition, increase in Al/Ga doping concentration expands the electron-occupied state below conduction band, leading to absorption under NIR wavelength.
The formation energy of different oxygen vacancy concentrations in AGZO shows that it easily reduces oxygen vacancy under oxygen-rich ambience. Oxygen vacancy leads to decrease in the a-axis and c-axis and thus narrows the cell volume. Increase in oxygen vacancy concentration make Znic throwed electrons decrease and enhance the receive electrons of Oxygen. Moreover, it enhances the unoccupied state near Fermi level; this phenomenon improves the absorption for shallow donor state. The carrier concentration transfer from shallow to deep donor state increases with increase in concentration of oxygen vacancy. Generation of oxygen vacancy leads to decrease in UV and visible wavelength average transmittance. We found the same effect in the experiment. While decrease the carrier concentration by increase in oxygen pressure during annealing process, the long wavelength transmittance decreases, because of the enhancement in empty bands. These results can theoretically explain the factors that influence the electrical and optical properties.
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
誌謝 iii
摘要 iv
英文摘要 vi
目錄 ix
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1-1 研究背景 1
1-2文獻回顧 3
1-2-1 氧化鋅之結構與性質 3
1-2-2 Al/Ga氧化鋅實驗與理論計算文獻-摻雜位置 4
1-2-3 Al/Ga氧化鋅實驗與理論計算文獻-摻雜濃度 5
1-2-4 Al/Ga氧化鋅實驗文獻-本質缺陷 7
1-3研究動機 9
第二章 理論基礎 10
2-1 薛丁格方程式 10
2-2 Density Functional Theory 11
2-3 Kohn-Sham方法 12
2-4 局部密度和廣義梯度近似法 13
2-5 Self-consistent過程 14
2-6 計算參數選取 14
2-7 透明導電之原理 15
2-7-1 導電率 15
2-7-2 光學特性 15
2-8 形成能計算式 16
第三章 實驗方法與步驟 21
3-1 實驗設備 21
3-1-1磁控濺鍍原理 21
3-1-2射頻磁控濺鍍(radio frequency magnetron sputtering) 21
3-1-3熱退火爐 22
3-2 分析儀器 22
3-2-1電子微碳分析儀(EPMA) 22
3-2-2電子能譜化學分析儀(ESCA) 22
3-2-3 X光繞射儀(XRD) 23
3-2-4 霍爾效應量測儀(Hall effect measurement) 23
3-2-5 紫外光-可見光-紅外光分光光譜儀(UV/VIS/NIR spectrometers ) 24
3-2-6薄膜輪廓儀 (α-step) 25
3-3 實驗流程與步驟 26
3-3-1實驗流程 26
3-3-2基板準備 27
3-3-3靶材選取與薄膜鍍製 27
第四章 結果與討論 29
4-1 Al/Ga位置共摻雜於氧化鋅 29
4-1-1 形成能 29
4-1-2 晶體結構、鍵長、電荷密度 30
4-1-3 能帶結構與能態密度 32
4-1-4 光學性質分析 35
4-2 Al/Ga不同濃度摻雜於氧化鋅 37
4-2-1形成能、晶體結構、鍵長、電荷密度 37
4-2-2 能帶結構與能態密度 39
4-2-3 光學性質分析 40
4-3 實驗與計算不同氧空缺濃度於Al/Ga共摻雜氧化鋅 42
4-3-1 形成能 42
4-3-2 結構優化 42
4-3-3 能帶結構與能態密度 43
4-3-4 光學性質分析 45
4-3-4 AGZO薄膜實驗分析 45
第五章 結論 97
參考文獻 99


1.Harvey, S. P.; Poeppelmeier, K. R.; Mason, T. O., Subsolidus Phase Relationships in the ZnO-In(2)O(3)-SnO(2) System. J Am Ceram Soc 2008, 91, (11), 3683-3689.
2.Liu, H. Y.; Avrutin, V.; Izyumskaya, N.; Ozgur, U.; Morkoc, H., Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattice Microst 2010, 48, (5), 458-484.
3.Gong, S. C.; Jang, J. G.; Chang, H. J.; Park, J. S., The characteristics of organic light emitting diodes with Al doped zinc oxide grown by atomic layer deposition as a transparent conductive anode. Synthetic Met 2011, 161, (9-10), 823-827.
4.Saarenpaa, H.; Niemi, T.; Tukiainen, A.; Lemmetyinen, H.; Tkachenko, N., Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Sol Energ Mat Sol C 2010, 94, (8), 1379-1383.
5.吳金寶, AZO 透明導電薄膜技術近況發展與應用. 2008.
6.Coleman, V. A.; Jagadish, C., Chapter 1 - Basic Properties and Applications of ZnO. In Zinc Oxide Bulk, Thin Films and Nanostructures, Jagadish, C.; Pearton, S., Eds. Elsevier Science Ltd: Oxford, 2006; pp 1-20.
7.Vispute, R. D.; Talyansky, V.; Choopun, S.; Sharma, R. P.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J. B.; Spencer, M. G.; Li, Y. X.; Salamanca-Riba, L. G.; Iliadis, A. A.; Jones, K. A., Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl Phys Lett 1998, 73, (3), 348-350.
8.Zhao, L.; Shao, G. J.; Song, S. T.; Qin, X. J.; Han, S. H. Z., Development on transparent conductive ZnO thin films doped with various impurity elements. Rare Metals 2011, 30, (2), 175-182.
9.McCluskey, M. D.; Jokela, S. J., Defects in ZnO. J Appl Phys 2009, 106, (7).
10.Erhart, P.; Albe, K., Diffusion of zinc vacancies and interstitials in zinc oxide. Appl Phys Lett 2006, 88, (20).
11.Janotti, A.; Van de Walle, C. G., Native point defects in ZnO. Phys Rev B 2007, 76, (16).
12.Park, S. M.; Ikegami, T.; Ebihara, K., Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 2006, 513, (1-2), 90-94.
13.Kim, D. K.; Kim, H. B., Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure. J Alloy Compd 2011, 509, (2), 421-425.
14.Huang, C. G.; Wang, M. L.; Deng, Z. H.; Cao, Y. G.; Liu, Q. L.; Huang, Z.; Liu, Y. A.; Guo, W.; Huang, Q. F., Effects of hydrogen annealing on the structural, optical and electrical properties of indium-doped zinc oxide films. J Mater Sci-Mater El 2010, 21, (11), 1221-1227.
15.Chang, H. P.; Wang, F. H.; Chao, J. C.; Huang, C. C.; Liu, H. W., Effects of thickness and annealing on the properties of Ti-doped ZnO films by radio frequency magnetron sputtering. Curr Appl Phys 2011, 11, (1), S185-S190.
16.Gokulakrishnan, V.; Parthiban, S.; Jeganathan, K.; Ramamurthi, K., Investigation on the effect of Zr doping in ZnO thin films by spray pyrolysis. Appl Surf Sci 2011, 257, (21), 9068-9072.
17.Ilican, S.; Yakuphanoglu, F.; Caglar, M.; Caglar, Y., The role of pH and boron doping on the characteristics of sol gel derived ZnO films. J Alloy Compd 2011, 509, (17), 5290-5294.
18.Clatot, J.; Campet, G.; Zeinert, A.; Labrugere, C.; Nistor, M.; Rougier, A., Low temperature Si doped ZnO thin films for transparent conducting oxides. Sol Energ Mat Sol C 2011, 95, (8), 2357-2362.
19.Onwona-Agyeman, B.; Nakao, M.; Kohno, T.; Liyanage, D.; Murakami, K.; Kitaoka, T., Preparation and characterization of sputtered aluminum and gallium co-doped ZnO films as conductive substrates in dye-sensitized solar cells. Chemical Engineering Journal 2013, 219, 273-277.
20.Ebrahimifard, R.; Golobostanfard, M. R.; Abdizadeh, H., Sol-gel derived Al and Ga co-doped ZnO thin films: An optoelectronic study. Appl Surf Sci 2014, 290, 252-259.
21.Hong, J.; Matsushita, N.; Kim, K., Effect of dopants and thermal treatment on properties of Ga-Al-ZnO thin films fabricated by hetero targets sputtering system. Thin Solid Films 2013, 531, 238-242.
22.Li, P.; Deng, S. H.; Li, Y. B.; Huang, J.; Liu, G. H.; Zhang, L., Aluminum and nitrogen impurities in Wurtzite ZnO: first-principles studies. Physica B: Condensed Matter 2011, 406, (17), 3125-3129.
23.Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B., A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO. J Phys Chem Solids 2013, 74, (1), 45-50.
24.Qu, X. R.; Wang, W.; Lv, S. C.; Jia, D. C., Thermoelectric properties and electronic structure of Al-doped ZnO. Solid State Commun 2011, 151, (4), 332-336.
25.Lee, Y. S.; Peng, Y. C.; Lu, J. H.; Zhu, Y. R.; Wu, H. C., Electronic and optical properties of Ga-doped ZnO. Thin Solid Films 2014, 570, 464-470.
26.Wook Shin, S.; Ung Sim, K.; Pawar, S. M.; Moholkar, A. V.; Ok Jung, I.; Ho Yun, J.; Moon, J.-H.; Hyeok Kim, J.; Yong Lee, J., Effect of a ZnO buffer layer on the properties of Ga-doped ZnO thin films grown on Al2O3 (0 0 0 1) substrates at a low growth temperature of 250 °C. J Cryst Growth 2010, 312, (9), 1551-1556.
27.Lei, P. H.; Hsu, C. M.; Fan, Y. S., Flexible organic light-emitting diodes on a polyestersulfone (PES) substrate using Al-doped ZnO anode grown by dual-plasma-enhanced metalorganic deposition system. Org Electron 2013, 14, (1), 236-249.
28.Periasamy, C.; Chakrabarti, P., Tailoring the Structural and Optoelectronic Properties of Al-Doped Nanocrystalline ZnO Thin Films. J Electron Mater 2011, 40, (3), 259-266.
29.Devi, V.; Kumar, M.; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kumar, R.; Joshi, B. C., Structural, optical and electronic structure studies of Al doped ZnO thin films. Superlattice Microst 2015, 83, 431-438.
30.Wu, H. C.; Peng, Y. C.; Chen, C. C., Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations. Opt Mater 2013, 35, (3), 509-515.
31.Stashans, A.; Olivos, K.; Rivera, R., Physical and chemical properties of a Ga-doped ZnO crystal. Phys Scripta 2011, 83, (6).
32.Paul, B.; Singh, B.; Ghosh, S.; Roy, A., A comparative study on electrical and optical properties of group III (Al, Ga, In) doped ZnO. Thin Solid Films 2016, 603, 21-28.
33.Ganesh, T.; Rajesh, S.; Xavier, F. P., Effect of Al dopant concentration on structural, optical and photoconducting properties in nanostructured zinc oxide thin films. Mat Sci Semicon Proc 2013, 16, (2), 295-302.
34.Fragala, M. E.; Malandrino, G.; Giangregorio, M. M.; Losurdo, M.; Bruno, G.; Lettieri, S.; Amato, L. S.; Maddalena, P., Structural, Optical, and Electrical Characterization of ZnO and Al-doped ZnO Thin Films Deposited by MOCVD. Chem Vapor Depos 2009, 15, (10-12), 327-333.
35.Ren, C. Y.; Chiou, S. H.; Hsue, C. S., Ga-doping effects on electronic and structural properties of wurtzite ZnO. Physica B 2004, 349, (1-4), 136-142.
36.Shinde, S. D.; Deshmukh, A. V.; Date, S. K.; Sathe, V. G.; Adhi, K. P., Effect of Ga doping on micro/structural, electrical and optical properties of pulsed laser deposited ZnO thin films. Thin Solid Films 2011, 520, (4), 1212-1217.
37.Zhang, X. J.; Pu, X. P.; Chen, Y.; Gu, X. Y.; Xu, D.; Zhang, S., Characterization of high concentration Ga-doped ZnO nano-powders prepared by sol-gel combustion. Mater Lett 2013, 112, 129-132.
38.Zhao, J. L.; Sun, X. W.; Ryu, H.; Moon, Y. B., Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition. Opt Mater 2011, 33, (6), 768-772.
39.Tsay, C. Y.; Fan, K. S.; Lei, C. M., Synthesis and characterization of sol-gel derived gallium-doped zinc oxide thin films. J Alloy Compd 2012, 512, (1), 216-222.
40.Della Gaspera, E.; Bersani, M.; Cittadini, M.; Guglielmi, M.; Pagani, D.; Noriega, R.; Mehra, S.; Salleo, A.; Martucci, A., Low-Temperature Processed Ga-Doped ZnO Coatings from Colloidal Inks. J Am Chem Soc 2013, 135, (9), 3439-3448.
41.Kim, J. P.; Bae, J. S.; Hong, T. E.; Won, M. S.; Yoon, J. H.; Lee, B. S.; Lee, H. J., Optical and electrical properties of ZnO films, codoped with Al and Ga deposited at room temperature by an RF sputtering method. Thin Solid Films 2010, 518, (22), 6179-6183.
42.Kim, T. H.; Ju, Y. G.; Park, L. S.; Lee, S. H.; Baek, J. H.; Yu, Y. M., Enhanced Optical Output Power of Tunnel Junction GaN-Based Light Emitting Diodes with Transparent Conducting Al and Ga-Codoped ZnO Thin Films. Jpn J Appl Phys 2010, 49, (9).
43.Chang, S. C., In-Line Sputtered Gallium and Aluminum Codoped Zinc Oxide Films for Organic Solar Cells. Int J Photoenergy 2014.
44.Lee, W.; Shin, S.; Jung, D.-R.; Kim, J.; Nahm, C.; Moon, T.; Park, B., Investigation of electronic and optical properties in Al−Ga codoped ZnO thin films. Curr Appl Phys 2012, 12, (3), 628-631.
45.Zhu, K.; Yang, Y.; Song, W., Effects of substrate temperature on the structural, morphological, electrical and optical properties of Al and Ga co-doped ZnO thin films grown by DC magnetron sputtering. Mater Lett 2015, 145, 279-282.
46.Kang, D. W.; Kim, S. J.; Moon, T. H.; Lee, H. M.; Han, M. K., Effect of Ga Doping on Transparent and Conductive Al-Doped ZnO Films Prepared Using Magnetron Cosputtering. Jpn J Appl Phys 2010, 49, (12).
47.Park, M.; Han, S. M., Enhancement in conductivity through Ga, Al dual doping of ZnO nanofibers. Thin Solid Films 2015.
48.Liu, J.; Zhang, W. J.; Song, D. Y.; Ma, Q.; Zhang, L.; Zhang, H.; Zhang, L.; Wu, R. S., Investigation of aluminum-gallium co-doped zinc oxide targets for sputtering thin film and photovoltaic application. J Alloy Compd 2013, 575, 174-182.
49.Lin, Y. C.; Chen, T. Y.; Wang, L. C.; Lien, S. Y., Comparison of AZO, GZO, and AGZO Thin Films TCOs Applied for a-Si Solar Cells. J Electrochem Soc 2012, 159, (6), H599-H604.
50.Assuncao, V.; Fortunato, E.; Marques, A.; Aguas, H.; Ferreira, I.; Costa, M. E. V.; Martins, R., Influence of the deposition pressure on the properties of transparent and conductive ZnO : Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films 2003, 427, (1-2), 401-405.
51.Maeng, W. J.; Lee, J. W.; Lee, J. H.; Chung, K. B.; Park, J. S., Studies on optical, structural and electrical properties of atomic layer deposited Al-doped ZnO thin films with various Al concentrations and deposition temperatures. J Phys D Appl Phys 2011, 44, (44).
52.Wang, H.; Xu, M. H.; Xu, J. W.; Yang, L.; Zhou, S. J., Effects of annealing temperature and thickness on microstructure and properties of sol-gel derived multilayer Al-doped ZnO films. J Mater Sci-Mater El 2010, 21, (2), 145-148.
53.Duygulu, N. E., Effect of r.f. power variation on gallium doped zinc oxide thin films. Vacuum 2015, 120, Part B, 19-27.
54.Huang, C.-S.; Liu, C.-C., The optical and electrical properties of gallium-doped ZnO thin film with post-annealing processes of various atmospheres. Microelectron Eng 2015, 148, 59-63.
55.Hong, R.; Qi, H.; Huang, J.; He, H.; Fan, Z.; Shao, J., Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films. Thin Solid Films 2005, 473, (1), 58-62.
56.Nahm, C.; Shin, S.; Lee, W.; Kim, J. I.; Jung, D. R.; Kim, J.; Nam, S.; Byun, S.; Park, B., Electronic transport and carrier concentration in conductive ZnO:Ga thin films. Curr Appl Phys 2013, 13, (2), 415-418.
57.Kim, H.; Osofsky, M.; Prokes, S. M.; Glembocki, O. J.; Pique, A., Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths. Appl Phys Lett 2013, 102, (17).
58.Lee, W.; Shin, S.; Jung, D. R.; Kim, J.; Nahm, C.; Moon, T.; Park, B., Investigation of electronic and optical properties in Al-Ga codoped ZnO thin films. Curr Appl Phys 2012, 12, (3), 628-631.
59.Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 1990, 41, (11), 7892-7895.
60.Youn, C. J.; Jeong, T. S.; Han, M. S.; Kim, J. H., Optical properties of Zn-terminated ZnO bulk. J Cryst Growth 2004, 261, (4), 526-532.
61.Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation: ideas, illustrations and the CASTEP code. J Phys-Condens Mat 2002, 14, (11), 2717-2744.
62.Kodu, M.; Arroval, T.; Avarmaa, T.; Jaaniso, R.; Kink, I.; Leinberg, S.; Savi, K.; Timusk, M., Effect of oxygen on active Al concentration in ZnO:Al thin films made by PLD. Appl Surf Sci 2014, 320, 756-763.
63.Zhang, J.; Que, W., Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method. Sol Energ Mat Sol C 2010, 94, (12), 2181-2186.
64.Yoon, M. H.; Lee, S. H.; Park, H. L.; Kim, H. K.; Jang, M. S., Solid solubility limits of Ga and Al in ZnO. J Mater Sci Lett 2002, 21, (21), 1703-1704.
65.Guo, T.; Dong, G.; Liu, Q.; Wang, M.; Wang, M.; Gao, F.; Chen, Q.; Yan, H.; Diao, X., Optimization of oxygen and pressure of ZnO:Al films deposited on PMMA substrates by facing target sputtering. Superlattice Microst 2013, 64, 552-562.
66.Kuprenaite, S.; Abrutis, A.; Kubilius, V.; Murauskas, T.; Saltyte, Z.; Plausinaitiene, V., Effects of annealing conditions and film thickness on electrical and optical properties of epitaxial Al-doped ZnO films. Thin Solid Films 2016, 599, 19-26.
67.Li, F. M.; Bo, L. T.; Ma, S. Y.; Huang, X. L.; Ma, L. G.; Liu, J.; Zhang, X. L.; Yang, F. C.; Zhao, Q., Effects of the oxygen partial pressure and annealing atmospheres on the microstructures and optical properties of Cu-doped ZnO films. Superlattice Microst 2012, 51, (3), 332-342.
68.Ren, H.; Xiang, G.; Gu, G.; Zhang, X., Enhancement of ferromagnetism of ZnO:Co nanocrystals by post-annealing treatment: The role of oxygen interstitials and zinc vacancies. Mater Lett 2014, 122, 256-260.
69.Sahay, P. P.; Nath, R. K.; Tewari, S., Optical properties of thermally evaporated CdS thin films. Cryst Res Technol 2007, 42, (3), 275-280.
70.Tauc, J. J., Amorphous and Liquid Semiconductor. Plenum Press, New York, NY 1976.
71.Devi, V.; Kumar, M.; Kumar, R.; Joshi, B. C., Effect of substrate temperature and oxygen partial pressure on structural and optical properties of Mg doped ZnO thin films. Ceram Int 2015, 41, (5, Part A), 6269-6273.
72.Burstein, E., Anomalous Optical Absorption Limit in InSb. Physical Review 1954, 93, (3), 632-633.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊