跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林祐璿
研究生(外文):Lin, You-Syuan
論文名稱:木屑堆肥碳化材料對重金屬吸附之探討
論文名稱(外文):Influence of Heavy Metal Adsorption by Sawdust Compost Carbonized Materials
指導教授:張小道
指導教授(外文):Chang, Hsaio-Dao
口試委員:楊棋明張煜光
口試委員(外文):Yang, Chi-MingChang, Yu-Kaung
口試日期:2015-01-10
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與安全衛生工程系環境工程碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:木屑堆肥生物碳吸附重金屬
外文關鍵詞:Sawdust compostBiocharAdsorptionHeavy metal
相關次數:
  • 被引用被引用:3
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計木屑分層堆肥方式,促使微生物在分層結構中沾附醱酵,將木質纖維轉變成較高礦質化原料,探討製造較佳生物性改質生物碳的條件。製造過程搭配低溫性氫氣活化,經灰化爐熱裂解產出碳化材後,分析組成及吸附能力差異並進行改良。產出的生物碳依經發酵區別為木屑堆肥碳及純木屑碳,為主要的比較材料。原料或碳化材評估以腐熟度指標、元素分析、BET比表面積分析等,評估木屑的醱酵程度及熱裂解後的變化,並與市售活性碳對照進行銅、鉻、鐵吸附試驗,比較吸附重金屬濃度範圍、pH影響及吸附停留時間的影響,最後以去除灰分為主要目標,嘗試建立更高品質的生物性改質生物碳製作方法。
藉由腐熟指標變化可確定木屑層有明顯微生物醱酵作用,主要影響含:(1) 堆肥鹽分轉移至木屑纖維層,使生物碳灰分含量增加,導致表面孔洞豐富程度降低,並形成無機性,類似沸石的結晶結構;(2) 微生物吸附及氮化物的分解與重組使木屑含氮量大幅提升,碳化後表面具有含氮官能基的形成,這些變化使木屑堆肥碳有優良的銅、鐵吸附能力,但對六價鉻幾乎沒有吸附性,成為木屑醱酵物的製碳限制。與純木屑碳比較,氫氣活化對於孔洞生成並無突顯效果,但用於維持高純度造碳環境是可行的。為進一步探討降低木屑堆肥碳灰份的方法,以約10%濃度硫酸浸洗碳化前原料是最佳的可行方式,灰分含量可由56.6 %降至9.0 %,促使表面孔洞與表面積明顯增加,雖然表面化學性質受影響,對銅吸附力雖略微下降,但對六價鉻吸附力則大幅提升,在所有碳化材中有最佳的綜合吸附性。整體來說,堆肥醱酵原料確實能促使生物碳表現對銅的親和力,並在硫酸酸洗後保持大部分銅吸附性及產生突出的六價鉻吸附性。

This study designed the sawdust stratified composting method to promote the leaven buildup by microbes in the stratified structure, there by transforming wood fiber into higher mineral-based material and investigating and manufacturing better conditions for biogenic modified biochar. The manufacturing process was matched with the low temperature activation processing of hydrogen. After the ashing furnace’s thermal cracking output carbonized materials, the differences of composition and adsorption capacity were analyzed, and improvements made. The output biochar based on fermentation differences are sawdust compost carbon and pure sawdust carbon as the better axis. The material or carbonized material uses the maturity indexes, elemental analysis, BET specific surface area analysis, and so on, to evaluate the fermentation degree of sawdust and change after thermal cracking. Adsorption tests were conducted on conduct copper, chromium, and iron in comparison with commercially available activated carbon, and the adsorbed heavy metal concentration range, pH influence, and influence of adsorption residence time were compared. Finally, the removal of ash was the main objective to try to establish a higher-quality biogenic modified production method.
Through the maturity index change can determine the sawdust layer has significant function in microbial fermentation. The composting influences include: (1) transference of composting salt into the sawdust fiber, increasing the biochar ash content and causing the abundance of surface pores to decrease and forming an inorganic nature similar to the crystalline structure of zeolite; (2) microorganism buildup and nitride decomposition and recombination significantly increased the sawdust nitrogen content. After carbonization, the surface formed nitrogen-containing functional groups. These changes caused the sawdust compost carbon to have excellent copper and iron adsorption capacity, but had almost no adsorption for hexavalent chromium, making it a manufacturing limitation of sawdust fermentation. In comparison with pure sawdust carbon, hydrogen activation showed no significant effect on the generation of holes but may be used to maintain a high degree of purity in the environment to create carbon.
In order to further explore the method of decreasing the sawdust compost carbon ash content, in which dipping raw material in about 10% concentration of sulfuric acid solvent before carbonation is the best possible method. The ash content can be decreased from 56.6% to 9.0%, thereby significantly increasing the surface holes and surface area. Although the chemical properties of the surface were affected, the adsorption ability of copper decreased slightly, but the hexavalent chromium adsorption ability increased significantly. The overall adsorption was the best in all carbonized materials. Overall, the raw materials of the compost fermentation can promote the affinity of biochar to copper, and after the washing in sulfuric acid, most of the prominent hexavalent chromium adsorption produced by copper adsorption was maintained.

目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vii
表目錄 x
圖目錄 xi
第一章 前言 1
1.1 研究缘起與目的 1
1.2研究流程 2
第二章 文獻回顧 3
2.1有機廢棄物與生物碳的關係 3
2.2生物碳的組成 4
2.3碳化材的類別 5
2.4 碳化材的製成與優化 7
2.4.1碳化過程的礦化理論 7
2.4.2吸附優化處理程序及方法 7
2.4.3影響碳化材表面吸附的因素 8
2.4.4碳化材的重金屬吸附特性 11
2.5碳化材吸附機制 12
2.5.1吸附模式 12
2.5.2多孔性物質吸附作用 13
2.5.3液相等溫吸附模式 13
2.6 木質纖維發酵前處理對提升碳材品質之理論 15
2.6.1堆肥腐質化過程 16
2.6.2腐質化過程的微生物族群 17
2.6.3木質纖維的分解與轉化 18
2.7常見重金屬危害及生物碳運用比較 20
第三章 實驗操作與方法 23
3.1 實驗規劃 23
3.2吸附劑製成方法及設備 25
3.2.1木屑堆肥製作方法及設備 25
3.2.2 吸附劑製成方法及設備 26
3.3基礎分析方法及設備 28
3.3.1原料及吸附劑樣品灰分分析 28
3.3.2原料及吸附劑樣品熱重分析(TGA) 29
3.3.3元素分析(AAS) 29
3.3.4表面官能基分析(FTIR) 29
3.3.5 X-ray繞射分析 30
3.3.6 BET比表面積及孔洞分析 30
3.3.7掃描式電子顯微鏡(SEM) 30
3.3.7碘值吸附 30
3.3.8亞甲基藍吸附 31
3.4重金屬吸附實驗及設備 31
第四章 結果與討論 34
4.1 有機固體發酵木屑處理 34
4.1.1木屑層生物活性表現 34
4.1.2木屑堆肥水解分子種植施作影響 38
4.2改質前、後木屑熱裂解比較 39
4.2.1熱重性質分析 39
4.2.2高倍率(SEM)表面性質觀察 40
4.3生物碳組成物分析 42
4.4 生物碳表面性質分析 47
4.5銅離子吸附 53
4.6鐵離子吸附性質分析 56
4.7六價鉻吸附性質分析 58
4.8 酸洗處理成果及前後性質比較 61
參考文獻 67
附錄A X-ray繞射分析重複實驗 74

表目錄
表2-1等溫吸附行為分析模式 14
表2-2穩定度及腐熟度參考的項目及類型 15
表2-3生長階段的優勢菌種及營養源比較 18
表2-4重金屬危害性及台灣現行排放標準 20
表2-5常見重金屬處理技術優、缺點比較 21
表2-6農業廢棄物生物碳的重金屬吸附能力 22
表4-1碳化材樣品灰分比例分析結果 42
表4-2碳化材樣品元素組成分析 43
表4-3碳化材樣品X-ray繞射分析表 44
表4-4木屑堆肥碳與前人樣品之比表面積及總孔容積比較表 50
表4-5碳化材樣品碘吸附量 51
表4-6木質材料生物碳對重金屬去除效益評估比較 66
表A-1木屑堆肥碳X-ray繞射重複分析表 74

圖目錄
圖2-1碳化材結構示意圖 4
圖2-2碳化材孔洞結構示意圖 9
圖2-3碳化材表面官能基種類圖 10
圖2-4部分含氧鹼性官能基 10
圖2-5部分含氧酸性官能基 10
圖2-6有機質生物降解流程 16
圖2-7木質纖維組成材料 19
圖3-1實驗架構流程圖 24
圖3-2木屑堆肥化意識圖 25
圖3-3碳化系統意識圖 26
圖3-4吸附劑樣品原料 27
圖3-5吸附劑樣品 27
圖4-1木屑分層堆肥處理系統呼吸速率變化 36
圖4-2木屑分層堆肥處理系統木屑層中心溫度變化 36
圖4-3木屑分層堆肥處理系統水分活度變化 37
圖4-4木屑分層堆肥處理系統酸鹼度變化 37
圖4-5木屑分層堆肥處理系統ATP活性變化 38
圖4-6木屑堆肥水解物施用於萵苣栽培分析 39
圖4-7原料熱重分析圖 40
圖4-8木屑及碳化材樣品掃描電子顯微鏡(SEM)圖像 41
圖4-9碳化材樣品X-ray繞射分析圖 45
圖4-10原料與碳化材樣品之FTIR分析圖譜 49
圖4-11木屑堆肥碳BET氮氣吸(脫)附表現 51
圖4-12亞甲基藍濃度吸附表現 52
圖4-13吸附時間(h)對Cu2+吸附的影響 53
圖4-14酸鹼度(pH)對Cu2+吸附的影響 54
圖4-15汙染物(Cu2+)濃度對吸附的影響 55
圖4-16吸附時間(min)對Fe2+吸附的影響 56
圖4-17汙染物(Fe3+)濃度對吸附的影響 57
圖4-18吸附時間(min)對Cr(VI)吸附的影響 58
圖4-19酸鹼度(pH)對Cr(VI)吸附的影響 59
圖4-20汙染物(Cr VI)濃度對吸附的影響 60
圖4-21吸附時間(h)對Cu2+吸附的影響 62
圖4-22酸鹼度(pH)對Cu2+吸附的影響 62
圖4-23汙染物(Cu2+)濃度對吸附的影響 63
圖4-24吸附時間(min)對Cr(VI)吸附的影響 64
圖4-25酸鹼度(pH)對Cr(VI)吸附的影響 64
圖4-26汙染物(Cr VI)濃度對吸附的影響 65
圖A-1木屑堆肥碳X-ray繞射重複分析圖 75



參考文獻
1.Ahn, C. K.; Park, D.; Woo, S. H.; Park, J. M. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. J. hazard. mater. 2009, 164, 1130-1136.
2.Baccara, R.; Bouzida, J.; Fekib, M.; Montiela, A. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J. hazard. mater. 2009, 162, 1522-1529.´
3.Beffa, T.; Blanc, M.; Lyon, P. F.; Vogt, G.; Marchiani, M.; Fischer, J. L.; Aragano, M. Isoation of thermos strains from hot composts 60-80°C. Appl. environ. microbiol. 1996, 62, 1723-1727.
4.Betancur, M.; Bonelli, P. R.; Velásquez, J. A.; Cukierman, A. L. Potentiality of lignin from the Kraft pulping process for removal of trace nickel from wastewater:effect of demineralization. Bioresource Technology. 2009, 100, 1130-1137.
5.Bhattacharya, A. K.; Venkobachar, C. Removal of cadmium(II) by low cost adsorbents. J. environ. eng. 1984, 110, 110-122.
6.Boehm, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 1994, 32, 759-769.
7.Cross, T. Thermophilic actinomycetes. J. appl. bacteriol. 1968, 31, 36-53.
8.Eriksson, K-E. L.; Blanchette, R.; Ander, P. Microbial and enzymatic degradation of woodand wood components. Springer, Berlin, Germany, 1990.
9.Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. environ. Manage. 2011, 92, 407-418.
10.Godden, B.; Ball, A. S.; Helvenstein, P.; McCarthy, A. J.; Penninckx, M. J. Towards elucidation of the lignin degradation pathway in actinomycetes. J. gen. microbiol. 1992, 138, 2441-2448.
11.Guo, M.; Qiu, G.; Song, W. Poultry litter-based activated carbon for removing heavy metal ions in water. Waste manag. 2010, 30, 308-315.
12.Guo, M.; Qiu, G.; Song, W. Poultry litter-based activated carbon for removing heavy metal ions in water. Waste manag. 2010, 30, 308-315.
13.Haug R. T. The practical handbook of compost engineering. Lewis Publishers: Boca Raton, U.S.A. 1993.
14.Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews. 2007, 11, 1966-2005.
15.John, K. B.; Teresa, J. B.; Kendall, T. T.; Keith, E. G. Water in porous carbons. Colloids and Surfaces. A, Physicochemical and Engineering Aspects. 2001, 187–188, 539-568.
16.Jr, V. S.; Malik, D. J. Characterization and metal sorptive properties of oxidized active carbon. J. colloid interface sci. 2002, 250, 213-220.
17.Jusoh, A.; Shiung, L. S.; Ali, N.; Noor, M. J. M. M. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination. 2007, 206, 9-16.
18.Kalavathy, M. H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L. R. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. J. colloid interface sci. 2005, 292, 354-362.
19.Kang, S. Y.; Lee, J. U.; Moon, S. H.; Kim, K. W. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere. 2004, 56, 141-147.
20.Kasnejad, M. H.; Esfandiari, A.; Kaghazchi, T.; Asasian, N. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu(II) adsorption. Journal of the Taiwan Institute of Chemical Engineers. 2012, 43, 736-740.
21.Kasnejad, M. H.; Esfandiari, A.; Kaghazchi, T.; Asasian, N. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption. Journal of the Taiwan Institute of Chemical Engineers. 2012, 43, 736-740.
22.Khezami, L.; Capart, R. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. J. hazard. mater. 2005, 123, 223-231.
23.Kołodyńska, D.; Wnętrzak, R.; Leahyb, J. J.; Hayes, M. H. B.; Kwapiński, W.; Hubicki, Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. eng. j. 2012, 197, 295-305.
24.Lahaye, J. The chemistry of carbon surfaces. Fuel. 1998, 77, 543-547.
25.Lewist, I.C. Chemistry of carbonization. Carbon. 1982, 20, 519-529.
26.Lima, L. S.; Araujo, M. D. M.; Quináia, S. P.; Migliorine, D. W.; Garcia, J. R. Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design. Chem. eng. j. 2011, 166, 881-889.
27.Liu, S.; Sun, J.; Huang, Z. Carbon spheres/activated carbon composite materials with high Cr(VI) adsorption capacity prepared by a hydrothermal method. J. hazard. mater. 2010, 173, 377-383.
28.Lo, S. F.; Wang, S. Y.; Tsai, M. J.; Lin, L. D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. eng. res. des. 2012, 90, 1397-1406.
29.Luiz, C. A.; Oliveira, C. N.; Silva, M. I.; Yoshida, R. M. The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon. 2004, 42, 2279-2284.
30.Malik, P. K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes pigm. 2003, 56, 239-249.
31.Mohan, D., Sarswat, A., Ok, Y. S., Jr, C. U. P. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology. 2014, 160, 191-202.
32.Mohan, D.; Jr, C. U. P. Arsenic removal from water/wastewater using adsorbents―A critical review. J. hazard. mater. 2007, 142, 1-53.
33.Moreno, J.; López, M. J.; Vargas-García, M. C.; Suárez-Estrella, F. Recent advances in microbial aspects of compost production and use. Acta hortic. 2013, 1013, 443-457.
34.Nakasaki, K.; Sasaki, M.; Shoda, M.; Kubota, H. Characteristic of mesophilic bacteria isolates isolated during thermophilic composting of sewage sludge. Appl. environ. microbiol. 1985, 49, 42-45.
35.Nor, N. M.; Chung, L. L.; Teong, L. K.; Mohamed, A. R. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. Journal of Environmental Chemical Engineering. 2013, 1, 658-666.
36.Park, H. G.; Kim, T. W.; Chae, M. Y.; Yoo, I. K. Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics. Process biochem. 2007, 42, 1371-1377.
37.Park, S. J.; Kim, K. D. Influence of activation temperature on adsorption characteristics of activated carbon fiber composites. Carbon. 2001, 39, 1741-1746.
38.Pellera, F. M.; Giannis, A.; Kalderis, D.; Anastasiadou, K.; Stegmann, R.; Wang, J. Y.; Gidarakos, E. Adsorption of Cu(II) ions from aqueous solutions on biocharsprepared from agricultural by-products. J. environ. manage. 2012, 96, 35-42.
39.Rodríguez-reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon. 1998, 36, 159-175.
40.Strom P. F. Effect of temperature on bacterature on bacterial species diversity in thermophilic solid waste composting. Appl. environ. microbiol. 1985, 50, 899-905.
41.Strom P. F. Effect of temperature on bacterature on bacterial species diversity in thermophilic solid waste composting. Appl. environ. microbiol. 1985a, 50, 899-905.
42.Strom, P. F. Effect of temperature on bacterature on bacterial species diversity in thermophilic solid waste composting. Appl. environ. microbial. 1985a, 50, 899-905.
43.Sudaryanto, Y.; Hartono, S. B.; Irawaty, W.; Hindarso, H.; Ismadji, S. High surface area activated carbon prepared from cassava peel by chemical activation, Bioresource Technology. 2006, 97, 734-739.
44.Sulaymon, A. H.; Mohammed, T. J.; Najar, J. Equilibrium and kinetics studies of adsorption of heavy metals onto activated carbon. Can. j. chem. Eng. 2012, 3, 86-92.
45.Suzuki, M. Adsorption Engineering. Elsevier: Amsterdam. 1990.
46.Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering. 2013, 116, 653-659.
47.Thambirajah, J. J.; Kuthubutheen, A. J. Composting of palm press fibre. Biol. wastes. 1989, 27, 257-269.
48.Tsai, W. T.; Chang, C. Y.; Lee, S. L. A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresource Technology. 1998, 64, 211-217.
49.Tsai, W. T.; Chang, C. Y.; Lee, S. L. Preparation and characterization of activated carbons from corn cob. Carbon. 1997, 35, 1198-1200.
50.Üçer, A.; Uyanik, A.; Aygün, S. F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology. 2006, 47, 113-118.
51.Ucer, A.; Uyanık, A.; Cay, S.; Ozkan, Y. Immobilisation of tannic acid onto activated carbon to improve Fe(III) adsorption, Separation and Purification Technology. 2005, 44, 11-17.
52.Waksman, S. A.; Cordon, T. C.; Hulpoi, N. Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil. Sci. 1939b, 47, 83-144.
53.Wigmans, T. Industrial aspects of production and use of activated carbons. Carbon. 1989, 27, 13-22.
54.Wsksman S. A.; Cordon T. C.; Hulpoi, N. Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil sci. 1939, 47, 83-114.
55.Zaini, M. A. A.; Okayama, R.; Machida, M. Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. J. hazard. mater. 2009, 170, 1119-1124.
56.Zaini, M. A.; Okayamaa, R.; Machida, M. Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. J. hazard. mater. 2009, 170, 1119-1124.
57.Zhang, T.; Walawender, W. P.; Fan, L. T.; Fan, M.; Daugaard, D.; Brown, R. C. Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. j. 2004, 105, 53-59.
58.Zucconi, F.; Bertoldi, M. Compost specifications for the production and characterization of compost from municipal solid waste. Compost: Production, quality and use. Essex: Applied Science Elsevier. 1987, 30-50.
59.李偉倫,以高溫高壓蒸爆法處理生廚餘堆肥化之研究,宜蘭大學環境工程研究所碩士論文,2011。
60.李艷霞、王敏健、王菊思,有機固體廢棄物堆肥的腐熟度參數及指標,環境科學20卷第二期,1999。
61.林文清,微晶纖維素廢料之活性碳熱裂解資源化研究,中央大學環境工程研究所碩士論文,2007。
62.林鳳祥,利用農業廢棄物製備活性碳吸附二氧化碳之研究,明志科技大學環境與資源工程研究所碩士論文,2013。
63.林勳佑,資源再利用粉狀活性碳吸附氣相氯化汞之研究,中山大學環境工程研究所博士論文,2003。
64.黃國峰、鐘流舉、張振鈿、吳啟堂,有機固體廢棄物堆肥的物質變化及腐熟度評價,應用生態學報第14卷第5期,2003。
65.黃得揚、陸文靜、王洪濤,有機固體廢物堆肥化處理的微生物學機裡研究,環境污染治理技術與設備第5卷第1期,2004。
66.詹景智,廢碳黑的兩類資源化技術探討,明志科技大學生化工程技術研發中心碩士論文,2012。
67.蔡人傑,蔬菜廢棄物好氧生物降解,高雄第一科技大學環境與安全衛生工程系碩士論文,2003。
68.鄭陽助、王雪梅、劉秀英,物理化學,新文京開發出版社,2008。
69.薛聖翰,利用熱重分析法探討含硫活性碳之氯化汞吸附及脫附研究,中山大學環境工程研究所碩士論文,2008。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊