跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/17 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱柏穎
研究生(外文):Bo-Ying Qiu
論文名稱:可同時進行散熱與供電之微流道發光二極體循環系統
論文名稱(外文):Circulating system for cooling and power supply of light-emitting diodes by using microfluidic channels
指導教授:鍾永強鍾永強引用關係
指導教授(外文):Yung-Chiang Chung
口試委員:洪國永楊龍杰
口試委員(外文):Guo-Yong HongLong-Jie Yang
口試日期:2016-07-26
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:65
中文關鍵詞:微機電系統微流道溫度感測光功率石墨烯
外文關鍵詞:MEMSmicrofluidic channeltemperature sensingoptical powerGraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
目前電子產品發展趨勢為輕薄、多功能、高元件密度等,在電子晶片功能傾向高速度、高功率與高密度時,會使單位面積發熱量急遽上升。當封裝體體積縮小,散熱不佳會是產品失效的原因。
本研究擬將注入電解液之微流道取代固體導線,使電解液同時供給能量與熱交換。首先以電解液為實驗樣本,以黃光微影製程製作微流道,再利用模型架構做出微流體電極,正負極單獨形成一個循環,並以高功率發光二極體為通電訊號標的,製作微流道發光二極體循環系統。藉由光功率計與溫度感測器量測有效亮度與溫度變化,針對不同模型之微流道與電解液流速所搭配的發光裝置做出比較。在溫度測試方面,固體模組與液體模組溫度相差9.3 °C,在亮度測試方面,固體導線光功率於初始100分鐘亮度較高,當到達120分鐘時固體導線光功率很明顯比液體導線光功率低約1.3 mW,接下來到達300分鐘時兩者皆進入穩態,但液體導線光功率還是比固體導線略高。由此得知固體導線的溫度高使LED光衰情況會比較快速,而液體導線因為溫度較低所以LED光衰的情況比較緩慢。

Nowadays, the trend of electronic product development includes thin and low-weight, multi-function and high density of component. The electron-ic chip features the tendency of high speed, high power and high density, and the amount of heat per unit area will rise sharply. When the volume of pack-age is reduced, poor heat dissipation will be the reason for the failure of the product.
We propose that the solid conductive wire can be replaced by the mi-cro-channel of ejecting electrolyte, and the electrolyte can supply energy and exchange heat in this study. First, the electrolyte is experimental sample, and the micro-channel is fabricated by the photolithography process, and then we use the model architecture to make a microfluidic electrode. The positive and negative electrodes form a loop, the high-power light-emitting diode is signal subject, and we set up a micro-channel light-emitting diode circulating system. The power meter and temperature sensor were used to measure the effective brightness and temperature variation, and the light-emitting devices of dif-ferent micro-channels with various flow velocities are compared. In temper-ature test result, the temperature of the solid conductive module was 9.3 °C higher than that of the liquid conductive module. In brightness test result, the optical power of the solid conductive module was higher than that of the liq-uid conductive module in the initial 100 minutes, the optical power of the solid conductive module was 1.3 mW lower than that of the liquid conductive module at 120 minutes, they reached the steady states at 300 minutes, and the optical power of the liquid conductive module was still higher than that of the solid conductive module. So the optical power decay of the LED with solid conductive wire due to higher temperature is sharper than that with liquid conductive wire.

明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
誌謝 iii
摘要 iv
ABSTRACT v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 3
1.4 論文架構 11
第二章 基礎原理與材料特性 12
2.1 熱傳基本原理 12
2.2 石墨烯特性 16
2.3 PDMS特性 17
2.4 SU8特性 17
第三章 實驗設計與分析 21
3.1 微流道尺寸設計 22
3.2 基板尺寸設計 23
3.3 電解液回收槽尺寸設計 24
3.4 實驗流程 25
3.5 電解液選用 25
第四章 製程與實驗方法 28
4.1 微流道製作 28
4.2 基板電極製作 37
4.3 實驗方法 39
第五章 結果與討論 42
5.1 模型之溫度趨勢 42
5.2 模型之光功率 47
5.3 模型溫度與光衰的關係 52
5.4 製程失敗原因探討與改善 58
第六章 結論與未來展望 60
6.1 結論 60
6.2 未來工作 61
參考文獻 62

[1]U.S. Air Force Avionics Integrity Program (AVIP), 1989.
[2]H. Y. Zang, D. Pinjala, P. S. Teo, “Thermal management of high power dissipation electronic packages from air cooling to liquid cooling,” IEEE Electronics Packaging Technology Conference, 620-625, Dec,2003.
[3]A. B. Cohen, A. D. Kraus, S. F. Davidson, “Thermal frontiers in the design and packaging of microelectronic equipment,” Journal of Mechanical En-gineering, 105(6), 53-59, 1983.
[4]C. P. Wong, and M. M. Wong, “Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics,” IEEE Transactions on Components and Packaging Technologies, vol 22, pp.21–25, Aug,1999.
[5]D. B. Tuckermann and R. F. W. Pease, “High-performance heat sinking for VLSI, IEEE Electronic Device Letters, vol.2,126-129, Aug,1981.
[6]D. B. Tuckermann and R. F. W. Pease, “Ultrahigh thermal conductance mi-crostructures for integrated circuits,” IEEE Proc. 32nd ElectronicsConfer-ence, pp.145-149 , 1982.
[7]P. Naphon and O. Khonseur, “Study on the convective heat transfer and pressure drop in the micro-channel heat sink,” International Communica-tions in Heat and Mass Transfer, vol. 36, pp. 39-44, 2009
[8]B. Agostini, J. R. Thome, M. Fabbri, B. Michel, D. Calmi, U. Kloter,“High heat flux flow boiling in silicon multi-microchannels –Part I: Heat transfer characteristics of refrigerant R236fa”InternationalJournal of Heat and Mass Transfer , vol. 51, pp. 5400–5414, Otc,2008.
[9]E. C. Patry, J. Olivier, B. A. Nichita, B. Michel, J. R. Thome,“Two-phase flow of refrigerants in 85 lm-wide mul-ti-microchannels:Part I – Pressure drop,”International Journal of Heat and Fluid Flow, vol. 32 pp.451–463, 2011.
[10]E. C. Patry, J. Olivier, B. Michel, J. R. Thome, “Two-phase flow of refrig-erants in 85 lm-wide mul-ti-microchannels:Part I –Heat transfer with 35 local heaters,” International Journal of Heat and Fluid Flow, 32(2) pp.464–476, 2011
[11]J. E. Park and J. R. Thome, “Critical heat flux in multi-microchannel copper elements with low pressure refrigerants,” International Journal of Heat and Mass Transfer vol. 53,pp.110-122, Jan,2010.
[12]J. B. Marcinichen, J. A. Olivier, J. R. Thome, “On-chip two-phase cooling of datacenters:Cooling system and energy recovery evaluation,” Applied Thermal Engineering , vol. 41 pp.36-51, Aug,2012.
[13]J. B. Marcinichen, D. Wu, S. Paredes, J. R. Thome, B. Michel, “Dy-namic flow control and performance comparison of different concepts of two-phase on-chip cooling cycles,” Applied Energy vol.114,pp.179-191, Apr,2014.
[14]Y. Madhour, B. P. Entremont, J. B. Marcinichen, B. Michel, J. R. Thome,“Modeling of Two-Phase Evaporative Heat Transfer in Three-Dimensional Multicavity High Performance Microprocessor Chip Stacks,” Journal of Electronic Packaging, vol. 136, num. 2 ,2014
[15]L. Y. Zhang, Y. F. Zhang, J. Q. Chen, S. L. Bai,“Fluid flow and heat trans-fer characteristics of liquid cooling microchannels in LTCC multi-layered packaging substrate,” International Journal of Heat and Mass Transfer, Vol. 84 pp.339–345, May,2015
[16]蔡豐欽,民國100年,熱傳遞,高立圖書。
[17]王鎮雄,民國89年,熱傳遞學,高立圖書。
[18]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Proper-ties and Intrinsic Strength of Monolayer Graphene,”,vol. 321, pp. 385-388,Jul, 2008
[19]洪偉修教授. 世界上最薄的材料--石墨烯. 98康熹化學報報 (康熹文化事業股份有限公司). 2009-11, 11月號
[20]A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materi-als 6, pp.183 – 191, 2007.
[21]李國賓,呂宗行,林哲信,洪振益,袁曉峰,陳國祥,”SU-8 厚膜光阻製造微 推進器噴嘴之研究”,中國機械工程學會第二十一屆全國學術研討會論文集,民國93年6月(2004)。
[22]J. H. Park, M. G. Allen, M. R. Prausnitz, “Polymer microneedles for con-trolled-release drug delivery,” Pharm. Res, vol. 23, no. 5, pp. 1008-1019, May, 2006.
[23]H. Sato, Y. Houshi and S. Shoji, “Three-dimensional micro-structures consisting of high aspect ratio inclined micro-pillars fabricated by sim- ple photolithography,” Microsyst Technol, vol. 10, no. 1, pp. 440–443, Otc,2004.
[24]楊益成,“可溶性微針頭陣列形貌最佳化設計及製程研製” 碩士論文,明志科技大學機械工程研究所,新北市,2015.。
[25]林士豪,”可同時進行散熱與供電之微流發光二極體設計與應用” 碩士論文,明志科技大學機械工程研究所,新北市,2015.。
[26]鄭鈞鴻,“不同尺寸微懸臂樑製程最佳化暨載重與撓度關係之研究” 碩士論文,明志科技大學機械工程研究所,新北市,2014.。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊