跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:萬恩福
研究生(外文):Wan, En Fu
論文名稱:基於微服務架構之即時建模的程式交易系統
論文名稱(外文):Real-Time Modeling Program Trading System Based On Microservice Architecture
指導教授:劉文卿劉文卿引用關係
指導教授(外文):Liou, Wen Ching
學位類別:碩士
校院名稱:國立政治大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:程式交易即時建模適應性調整時間序列模型分散式運算集成方法
外文關鍵詞:Program TradingReal-Time ModelingAdaptationTime Series ModelDistributed ComputingEnsemble Method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以預測台指期為例,透過時間序列作為預測模型,其貢獻在於以即時建模的方式,解決批次建模難以臨時調整模型之缺點,以分散式運算技術Storm,結合R之運算環境,在極短的時間內,平行建立大量單變數與多變數時間序列模型,改善以往建立模型時,為了找出較佳模型,所需反覆執行的建模過程,最後採取集成方法,將所有模型集結起來,以投票方式預測適應性訊號,並且透過適應性調整的機制,逐漸逼近最佳的預測準確度。
摘要 I
目錄 II
圖目錄 V
表目錄 VII
第一章 、緒論 1
第一節 、研究背景 1
第二節 、研究動機與目的 1
第三節 、研究流程 4
第二章 、文獻探討 5
第一節 、單根檢定 5
第二節 、ARMA與ARIMA 6
一 、ARMA(p, q) 6
二 、ARIMA(p, d, q) 7
三 、Box-Jenkins 7
第三節 、GARCH 8
第四節 、JOHANSEN共整合檢定 9
一 、跡檢定(Trace Test) 10
二 、最大特性根檢定(Maximum Eigenvalue Test) 10
第五節 、VAR與VECM 10
一 、VAR(Vector Autoregression) 10
二 、VECM(Vector Error Correction Model) 11
第六節 、CORONA 12
第七節 、DOCKER 13
第八節 、APACHE KAFKA 14
第九節 、APACHE SPARK 16
第十節 、APACHE STORM 19
第十一節 、RSERVE 21
第三章 、研究方法 23
第一節 、研究架構 23
第二節 、即時建模 24
一 、集成方法(Ensemble Method) 24
二 、模型等級 28
第三節 、適性訊號 30
一 、適性訊號產生 30
二 、適應性調整(Adaptation) 31
第四節 、兩階段建模 33
第四章 、系統實作與測試 35
第一節 、系統概述 35
第二節 、系統實作 39
一 、Corona微服務 39
二 、兩階段建模微服務 42
第三節 、系統測試 60
一 、測試環境 60
二 、測試結果 63
第五章 、結論與未來展望 69
第一節 、結論 69
第二節 、未來展望 70
參考文獻 71

[1] Y. F. Wang, "Predicting stock price using fuzzy grey prediction system," Expert Systems with Applications, vol. 22, pp. 33–38, 2002/01/01 2002.
[2] M. H. F. Zarandi, B. Rezaee, I. B. Turksen, and E. Neshat, "A type-2 fuzzy rule-based expert system model for stock price analysis," Expert Systems with Applications, vol. 36, pp. 139–154, 2009/01/01 2009.
[3] R. J. Kuo, C. H. Chen, and Y. C. Hwang, "An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network," Fuzzy Sets and Systems, vol. 118, pp. 21-45, 2001/02/16 2001.
[4] R. Tsaih, Y. Hsu, and C. C. Lai, "Forecasting S&P 500 stock index futures with a hybrid AI system," Decision Support Systems, vol. 23, pp. 161–174, 1998/06/01 1998.
[5] M. M. Rounaghi and F. N. Zadeh, "Investigation of market efficiency and financial stability between S&P 500 and London stock exchange: Monthly and yearly forecasting of time series stock returns using ARMA model," Physica A: Statistical Mechanics and its Applications, vol. 456, pp. 10–21, 2016/08/01 2016.
[6] V. Akgiray, "Conditional Heteroscedasticity in time series of stock returns: Evidence and forecasts," The Journal of Business, vol. 62, pp. 55-80, 1989/01 1989.
[7] H. R. Stoll and R. E. Whaley, "The dynamics of stock index and stock index futures returns," Journal of Financial and Quantitative Analysis, vol. 25, pp. 441-468, 1990/12/01 1990.
[8] Q. C. Chu, W.-l. G. Hsieh, and Y. Tse, "Price discovery on the S&P 500 index markets: An analysis of spot index, index futures, and SPDRs," International Review of Financial Analysis, vol. 8, pp. 21-34, 1999/01/01 1999.
[9] D. A. Dickey and W. A. Fuller, "Distribution of the estimators for Autoregressive time series with a unit root," Journal of the American Statistical Association, vol. 74, pp. 427-431, 1979/06 1979.
[10] G. E. Pelham and G. Jenkins, "Time series analysis, forecasting and control," 1990/01/11 1990.
[11] R. F. Engle, "Autoregressive conditional Heteroscedasticity with estimates of the variance of United Kingdom inflation," Econometrica, vol. 50, pp. 987-1007, 1982/07 1982.
[12] T. Bollerslev, "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, vol. 31, pp. 307-327, 1986/04/01 1986.
[13] S. Johansen, "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, vol. 12, pp. 231-254, 1988/06/01 1988.
[14] 楊奕農, 時間序列分析, 2009.
[15] C. A. Sims, "Macroeconomics and reality," Econometrica, vol. 48, pp. 1-48, 1980/01 1980.
[16] R. F. Engle and C. W. J. Granger, "Co-Integration and error correction: Representation, estimation, and testing," Econometrica, vol. 55, pp. 251-276, 1987/03 1987.
[17] K. Yang, H. Yoon, and C. Shahabi, "A feature subset selection technique for Multivariate time series," Advances in Knowledge Discovery and Data Mining, pp. 516-522, 2005.
[18] D. Inc. (2016). Docker. Available: https://www.docker.com/
[19] A. S. Foundation. (2016). Apache Kafka. Available: http://kafka.apache.org/
[20] J. Kreps, L. Corp, and J. Rao, "Kafka: A distributed messaging system for log processing."
[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, Justin, M. McCauley, et al., "Resilient distributed Datasets: A fault-tolerant abstraction for in-memory cluster computing."
[22] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, "Discretized streams," Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles - SOSP '13, 2013.
[23] A. S. Foundation. (2016). Apache Spark. Available: http://spark.apache.org/
[24] A. S. Foundation. (2016). Apache Storm. Available: http://storm.apache.org/
[25] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, et al., "Storm@twitter," pp. 147-156, 2014/06/18 2014.
[26] S. Urbanek, "Rserve A fast way to provide R Functionality to applications," 2003.
[27] Kong. (2014). Microservices architecture pattern. Available: http://microservices.io/patterns/microservices.html

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top