(3.236.118.225) 您好!臺灣時間:2021/05/14 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳勝翔
研究生(外文):Sheng-Hsiang Chen
論文名稱:考慮異向性依時行為之板岩隧道開挖數值分析研究
論文名稱(外文):Numerical Analysis of Tunneling in Slates with Anisotropic and Time-dependent Behavior
指導教授:壽克堅壽克堅引用關係
指導教授(外文):Keh-Jian Shou
口試委員:林宏達葛宇甯余騰鐸
口試日期:2016-06-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:121
中文關鍵詞:板岩黏塑性異向性依時行為數值分析反算分析
外文關鍵詞:time-dependentviscoplasticnumerical analysisback analysisslateanisotropy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
板岩之岩體性質同時具有異向性與依時行為,其主因是板岩之劈理傾角性質,對於應力分佈會造成左右不對稱之現象,進而發展出不對稱之塑性區;其發達的劈理間隙中時常有夾泥等情形產生,當板岩遭遇開挖解壓時常產生異向性之變形;而其行為並非單純的彈性與塑性關係;又考慮其解壓過程中變形特性之改變,應是具有依時性之黏彈性與塑性行為模式,針對板岩岩盤開挖,異向性與依時行為是必須同時被考慮,才能較準確的模擬其行為。
本研究先採用FLAC均佈節理(Ubiquitous-joint model ,UBI)材料模式,模擬板岩隧道開挖解壓、安裝支撐等不同施工階段時,板岩的異向性行為,以應力場及位移場探討塑性區分佈及內空變位對開挖施工影響;並利用FLAC3D之均佈節理(UBI)比較三維效應及探討應力釋放等研究。其次採用FLAC柏格黏塑性(Burger-creep visco-plastic model ,CVISC)材料模式,以反算分析方式求取重要參數,將原本彈性行為修正為黏彈性行為,以考慮岩石材料之依時性。因板岩異向性行為與依時行為皆有顯著貢獻,故利用FLAC外掛UDM模組,整合前兩種材料模式並新建節理柏格(UBI/BUR)。節理柏格(UBI/BUR)將柏格黏塑性(CVISC)之黏塑性行為及均佈節理(UBI)中劈理塑性行為結合,以同時探討兩者對於塑性區分佈、內空變位等影響。
案例分析於開挖及支撐階段,均佈節理(UBI)能夠有效地呈現出劈理傾角的影響,並可延伸出傾角大小對於板岩岩盤內空變位貢獻程度等相關研究,但歷時曲線無法符合計測數據之變位行為,原因即為未考慮板岩依時行為所造成之影響;柏格黏塑性(CVISC)探討板岩依時行為就必須捨棄均佈節理(UBI)劈理傾角之異向性特性,分析時發現反算逼近無法完美達到計測變位資料等缺陷存在。經由修正潛變時間與合理化黏滯性參數,可有效改善反算結果,並將節理柏格(UBI/BUR)中的異向性及依時性同時呈現。

Cleavage is a major structure in slates, and its orientation is critical for the anisotropy property of stress field. As a soft rock, the cleavages in slate tend to be weathered and form opening with or without filling material. For the tunnel excavation in slates, it is common to have anisotropy deformation. Its behavior can not be described by a simple elastic or plastic model. To consider the deformation characteristics of the stress release process during tunneling, more sophisticated model including anisotropy property and time-dependent behavior is essential.
In this study, we use the Ubiquitous-joint model (UBI) to simulate tunnel excavation in slate, for different stages of stress release and tunnel support. Then, we use Burger-creep visco-plastic model (CVISC) to study time-dependent behavior of slates. For the above two model, we can obtain the material parameters by back analysis based on the monitoring data. However, this study established a UDM model to combine UBI and CVISC model, named UBI/BUR, which integrates CVISC mode and UBI mode. This model can more properly describe the behavior of slates, and good for the simulation of tunneling in slates.
The results of this study suggest that UBI can effectively represents the influence of cleavage, however, the displacement history curve does not closely conform to the monitoring data. And the reason for this discrepancy is the model is short of time-dependent behavior of the slate. CVISC can describe time-dependent behavior, but it can’t consider the anisotropy of cleavage. In this case analysis, the results show that the UBI/BUR model can more properly match the monitoring data.

摘要 i
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1.前言 1
1.2.研究動機與目的 1
1.3.研究內容 2
1.4.論文架構 2
第二章 文獻回顧 4
2.1.岩石弱面相關文獻 4
2.1.1.岩體強度及評分法 4
2.1.2.弱面相關文獻 4
2.1.3.板岩相關文獻 5
2.2.數值分析相關文獻 5
2.2.1.有限元素分析相關文獻 5
2.2.2.隧道開挖材料参數 6
2.2.3.模型參數與時間相關性 7
第三章 研究方法 9
3.1.數值分析軟體及分析方法 9
3.2.數值模型理論基礎 9
3.2.1.數值解析理論 9
3.2.2.數值模擬基本假設 11
3.2.3.現地應力狀態 12
3.3.數值模型建立 12
3.3.1.節點設定、網格劃分 13
3.3.2.元素選用 13
3.3.3.邊界條件、初始應力條件 19
3.3.4.材料參數、塑性準則選用 19
3.3.5.地下水位、弱面之考量方式 20
3.3.6.開挖階段與支撐型式 20
3.3.7.位移量計算 21
3.4.材料模式探討 22
3.4.1.劈理傾角相關研究 22
3.4.2.應力釋放相關研究 23
第四章 案例分析 37
4.1.地形地質條件 37
4.2.基本材料參數選用 38
4.3.反算數值材料參數 39
4.3.1. UBI模式反算 39
4.3.2. CVISC模式反算 40
4.3.3. UBI/BUR模式反算 41
第五章 數值模擬結果與比較 70
5.1.分析結果 70
5.1.1. UBI、CVISC、UBI/BUR二維分析結果 70
5.1.2.UBI三維分析結果 88
5.1.3 UBI/BUR模式因子敏感度分析 101
5.2.結果比較 108
5.2.1.二維與三維結果比較 108
5.2.2. UBI、CVISC、UBI/BUR結果比較 112
第六章 結論 115
6.1結論 115
6.2建議 117
參考文獻 118

Asadollahpour, E., Rahmannejad, R., Asghari, A., Abdollahipour, A., 2014, “Back analysis of closure parameters of Panet equation and Burger''s model of Babolak water tunnel conveyance”, International Journal of Rock Mechanics & Mining Sciences, 68, 159-166.

Bahareh, V., Attila, M.Z., 2013, “A finite element mesh optimization method incorporating geologic features for stress analysis of underground excavations”, International Journal of Rock Mechanics & Mining Sciences, 59, 111-119.

Bozzano, F., Martino, S., Montagna, A., Prestininzi, A., 2012, “Back analysis of a rock landslide to infer rheological parameters”, Engineering Geology, 131(132), 45-56.

Coulter, S., Martin, C.D., 2006, “Effect of jet-grouting on surface settlements above the Aeschertunnel, Switzerland”, Tunnelling and Underground Space Technology, 21, 542-553.

Fahimifar, A., Zareifard, M.R., 2009, “A theoretical solution for analysis of tunnels below groundwater consideringthe hydraulic–mechanical coupling”, Tunnelling and Underground Space Technology, 24, 634-646.

Ghazvinian, A.H., Taghichian, A., Mahmoud Hashemi, Mar’ashi, S.A., 2010, “The shear behavior of bedding planes of weakness between two different rock types with high strength difference”, Rock. Mech. Rock. Eng., 43, 69-87.
Hoek, E., Carranza-Torres, C., Corkum, B., 2002, “Hoek-Brown failure criterion – 2002 Edition”, Proc. NARMS-TAC Conference, Toronto, 1, 267-273.

Huy, T.M., Jean, S., Didier, S., Billaux, D., 2015, “Anisotropic time-dependent modeling of tunnel excavation in squeezing ground”, Rock. Mech. Rock. Eng., 48, 2301-2317.

Karakus, M., 2007, “Appraising the methods accounting for 3D tunneling effects in 2D plane strain FE analysis”, Tunnelling and Underground Space Technology, 22, 47-56.

Lambrughi, A., Rodriguez, L.M., Castellanza, R., 2012, “Development and validation of a 3D numerical model for TBM–EPB mechanised excavations”, Computers and Geotechnics, 40, 97-113.

Larson, M.K., Wade, R.G., 2001, “Creep along weak planes in roof and how it affects stability”, Transactions of Society for Mining, 310, 47-54.

Li, B., Wu, L., Xu, C., Yuan, Q., 2014, “Rheological properties of different stress levels in deep slate of high-speed railway tunnel”, EJGE, 19, 6715-6728.

Lo, C.M., Feng, Z.Y., 2014, “Deformation characteristics of slate slopes associated with morphology and creep”, Engineering Geology, 178, 132-154.
Marinos, V., Marinos, P., Hoek, E., 2005, “The geological strength index: applications and limitations”, Bull. Eng. Geol. Environ., 64, 55-65.

Pellet, F., Roosefid, M., Deleruyelle, F., 2009, “On the 3D numerical modelling of the time-dependent development of the damage zone around underground galleries during and after excavation”, Tunnelling and Underground Space Technology, 24, 665-674.

Prazeres, P.G.C., Thoeni, K., Beer, G., 2012, “Nonlinear analysis of NATM tunnel construction with the boundary element method”, Computers and Geotechnics, 40, 160-173.

Sridevi, J., Sitharam, T.G., 2000, “Analysis of strength and moduli of jointed rocks”, Geotechnical and Geological Engineering, 18, 3-21.

李慶龍,黃偉光,2013, 「萬松水力發電工程隧道施工計測及處理探討」, 第十二屆海峽兩岸隧道與地下工程學術與技術研討會。

李嶸泰,江政恩,黃崇仁,徐家聲,康宏呈,2012,「霧社水庫右山脊板岩邊坡變形調查及修復工程設計」,中華水土保持學報,第43卷,第4期,第346-358頁。

林育德,2009,「規則節理面夾泥對剪力行為之影響」,碩士論文,國立臺灣海洋大學河海工程學系。


曾胤棋,2012,「不規則岩石節理面含夾泥對剪力行為之影響」,碩士論文,國立臺灣海洋大學河海工程學系。

賴丞昶,錢滄海,張光宗,2011,「廬山地滑參數反算分析」,水土保持學報,第43卷,第2期,第185-202頁。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔