跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳帝臻
研究生(外文):Di-Jhen Chen
論文名稱:微生物礦化作用防止土壤液化之可行性探討
論文名稱(外文):Feasibility Study of Biomineralization Application to Prevention of Soil Liquefaction
指導教授:陳豪吉陳豪吉引用關係
指導教授(外文):How-Ji Chen
口試委員:楊明德蔡文博
口試委員(外文):Mingder YangWen-Po Tsai
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:112
中文關鍵詞:土壤液化MICP微生物礦化作用
外文關鍵詞:Soil liquefactionMICPBiomineralization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類對於土壤液化的認識起源於自然環境地震的威脅。土壤具有豐富的礦物質與有機物質,使人類及所有植物或動物均能在土壤環境中活動,多樣性微生物的棲息環境也會擇以不同的土壤繁殖生長。土壤中微生物體的活性,主要是受溫度、光密度、土壤水份、養份有效性,pH值以及碳源可用性等影響。土壤微生物監測及群聚數據分析,則主要是藉由碳源的比較及細菌的種類與數量分析。然而,針對土壤的液化現象能採用誘導方解石凝結(Microbiologically Induced Calcite Precipitation, MICP)生物技術,也稱為微生物礦化作用(Biomineralization),它是以生物化學與分子技術法或是溶液沉澱法為基礎,利用微生物仿生的特性,應用在奈米技術上,其生物添加劑的濃度是影響礦化生成晶形的關鍵。從本研究可發現,微生物會隨著土層深度而逐漸減少菌數,微生物好氧化性愈弱其存活率愈高,鈣元素是屬於被動吸收,在添加含負離子的硫酸鹽能協助酵素與鈣結構的合成。微生物細胞活性的催化反應會因紫外線而抑制了DNA基因鏈的複製,以波長UV-D或無機奈米粉體表面被覆技術可避免細胞斷裂致死。在自然機制環境中,海洋微生物產生之生物礦化石或砂含有碳酸鈣,不僅比矽砂更具有地震荷載作用能力,且能發展成為高強度的複合材料。同樣在鈣藻的細胞囊壁、海膽的脊柱硬刺與珊瑚的海綿骨骼中也含有碳酸鈣元素。碳酸鈣(方解石)具可塑性變形晶體,完全不受高壓力與高溫度的環境條件所影響,若以生物礦化石或砂方式填補在土壤孔隙中,在地震時可大幅提高抗土壤液化能力。由此而論,只要注意涉及技術設備或環境層面的影響及配套措施,以MICP生物技術作為防止土壤液化應該是可行的。

About risk of threat posed from soil liquefaction, human cognitive processes of acquiring knowledge originate and understanding is come from the natural environment by earthquakes. Soil has abundant natural minerals and matter composed of organic compounds, as they can make human and animals or all the plants for biome survival activity in the soil environment. Habitats of biological diversity would also choose reproduction and growth in different soil types. Active microorganisms in soil were mainly affected by temperature, optical density, soil moisture, nutrients validity, pH value, and availability of carbon. For soil microorganisms, we direct microscopic examination on monitoring with clustering habitat of microbial communities for the both as data analysis, also are mainly by way of carbon source in comparison, and statistical analysis on types and numbers of bacteria. However, MICP Biotechnology that it may be possible to employ this reaction to make Microbiologically Induced Calcite Precipitation (MICP), also known as Biomineralization which is based on biochemistry, and molecular techniques or method used in solution by the precipitation method. Biomineralization, it uses physical characteristic of biologically-controlled mineralization to application in Nanotechnology. How to calculate the concentration of biological additives is as influence mineralization to generating crystalline. The results from these studies can be found on microorganisms, it follow the depth of soil is gradually reducing the number of bacteria, and when oxidative stress in microorganisms get weaker its survival rates are to be higher. Elemental calcium all belong of passive absorb. Add contain sulfate ions as sulfates of negative ions in solution, SO42-, are to promote enzyme with calcium structure for synthesis. A catalytic reaction at active of microbial cells, because of that ultraviolet radiation can be inhibited replication of the deoxyribonucleic acid (DNA) for genetic linkage, if want prevention these cells breaking from a lethal use at a wavelength of UV-D or a surface-coating technology of inorganic nanometer powder. In the environment among of the natural mechanisms, can be produced biological fossils of mineral or sand all come from that contains calcium carbonate of ocean microorganisms. Not only does it has the seismic loads more than silica sand, and can develop into a high-strength of composite materials, also the well cells of calcareous algae, sea urchin spines on the spine and sponge coral inside spicules as elemental calcium. Calcium carbonate (as calcite) have within the plastically deformable crystals, it can be not subject to influence are in high pressure and high temperature environmental conditions, if use biological fossils of mineral or sand by this way to filling soil pores, then will can significantly improve the ability of anti-soil liquefaction flow during an earthquake. Conclusion in regard for this, as long as attention relates to technological equipment or levels in environmental impact and supporting measures, in order that MICP Biotechnology as to prevention soil liquefaction should be workable.

誌謝辭  i
摘要 iii 
目錄  vi
表目錄 ix
圖目錄  x
壹、 緒論 1
一、 研究背景與動機 1
二、 研究目的 3
三、 研究架構與流程 4
貳、 文獻探討 5
一、 土壤液化 5
(一) 土壤定義與特性 5
(二) 影響土壤因素 5
(三) 土壤相互作用 7
(四) 液化定義與特性 10
(五) 影響液化因素 10
(六) 地震力作用 11
二、 微生物礦化作用 20
(一) 微生物定義與特性 20
(二) 微生物礦化與應用 20
(三) 細菌細胞礦化與應用 21
(四) 礦化作用應用於土壤液化之特性與限制 24
三、 微生物礦化文獻回顧 28
參、 研究方法 33
一、土壤自淨功能與微生物降解、轉化作用之影響 33
二、鹽的溶解度與溫度之影響 33
三、酶(或酵素)活性分析之應用 35
(一) 比爾-朗伯定律(BEER-LAMBERT LAW) 35
(二) 酵素活性 36
(三) 酵素生成反應 36
(四) 土壤酵素活性(SOIL ENZYMES ACTIVITIES)測定法 37
四、土壤微生物多樣性監測之應用 38
(一) 樣品收集 39
(二) 樣品製備 39
(三) 多樣性微生物群聚(CLPP)數據分析 40
(四) 水質分析 41
(五) CLPP分析反應 41
五、土壤地質與生物礦化之影響 43
(一) 鑑定礦物的物理性 43
(二) 鑑定岩石的物理性 44
(三) 可生物礦化作用的礦物 44
(四) 可生物礦化作用的岩石 48
六、微生物仿生礦物沉澱之應用 48
(一) 礦物的解理 48
(二) 結晶質構造(CRYSTALLINE STRUCTURE) 49
(三) 岩石的岩理與節理 49
(四) 礦物生成方法 50
(五) 礦物人工合成方法 52
七、土壤液化與地下水鹽化之應用 54
(一) GHYBEN-HERZBERG海水入侵物理關係 58
(二) 古埃-查普曼雙電層理論(GOUY-CHAPMAN DOUBLE LAYER THEORY) 59
肆、 實證結果與分析 62
一、研究對象與資料來源 62
(一) 評估霰石與方解石之探討 64
(二) 評估多環芳香烴與氧化酶之探討 67
(三) 評估珊瑚海綿細胞與核糖核酸之探討 68
(四) 評估海膽刺與甘胺酸之探討 70
(五) 評估竹炭粉末與二氧化鈦之探討 74
(六) 評估鈣藻晶體結構取向關係之探討 76
(七) 評估陸地矽砂(石英砂)與海灘微生物鈣質砂之探討 81
(八) 評估尿素與嗜鹼生物-巴氏芽孢桿菌之探討 87
(九) 評估溼地樣品製備方法與微生物群聚之探討 93
(十) 評估聚羥基烷酸酯與聚乳酸之探討 95
二、成效與改善評估機制 97
(一) 微生物培養條件 97
(二) 土壤液化土質改良條件 99
伍、 結論與建議 101
一、結論 101
(一) 微生物在MICP技術可行性 101
(二) 微生物在MICP技術不可行性 102
二、建議 103
(一) MICP技術在菌體養成時之建議 103
(二) MICP技術應用在防止土壤液化施作時之建議 103
參考文獻 105
表目錄 
表2.1:評估微生物礦化技術之文獻 29
表3.1:礦石基本資料表 47
表3.2:臺灣縣市地下水管制區段或區域範圍表 56
表4.1:基本資料表 62
表4.2:方解石在高壓力與溫度試驗結果表 66
表4.3:霰石在高壓力與溫度試驗結果表 67
表4.4:矽砂與鈣砂的屬性表 83
表4.5:原料的化學成份表 89
圖目錄 
圖1.1:研究架構與流程 4
圖2.1:土壤剖面之育化層結構圖 6
圖2.2:中間地形圖 6
圖2.3:世界各地火山形態與板塊構造地質之分佈圖 13
圖2.4:芮氏震級的應用 15
圖2.5:地震矩規模與釋放能量幅度之關係圖 16
圖2.6:不同類型地震波引起的地面運動 16
圖2.7:不同類型的地震波引起的破壞現象 17
圖2.8:土壤液化的破壞現象 18
圖2.9:模擬海嘯形成長波圖 19
圖3.1:鹽的溶解度與溫度的關係 34
圖3.2:酵素反應曲線圖 37
圖3.3:生物膜水樣的吸光值分析圖(未校正) 42
圖3.4:生物膜水樣的平均吸光值分析圖 42
圖3.5:立方晶體形成不同密勒指數 53
圖3.6:變質岩作用的受壓原理 54
圖3.7:臺灣土壤液化潛勢地區圖 55
圖3.8:中彰投地區土壤液化敏感度分析圖 57
圖3.9:GHYBEN-HERZBERG物理關係變化圖 59
圖3.10:GOUY-CHAPMAN擴散雙電層模型變化圖 60
圖4.1:霰石與方解石平衡曲線圖 65
圖4.2:珊瑚海綿的文石結晶生長階段與纖維結構體剖面圖 69
圖4.3:珊瑚海綿的大囊泡細胞(LCV)內球晶(年輪)與文石晶體針狀結構剖面圖 69
圖4.4:珊瑚海綿的外皮層鞏膜組織、球狀晶體與鈣質骨骼系統剖面圖 70
圖4.5:海膽脊椎的SEM分析圖 72
圖4.6:方解石原胞在海膽軀殼的SEM晶體結構圖 73
圖4.7:海膽刺的SEM分析圖 73
圖4.8:海膽刺的黏多醣與鈣基質SEM分析圖 73
圖4.9:胺基酸溶液在方解石{104}表面結構GIXRD電荷分佈圖 74
圖4.10:甘氨酸溶液在方解石表面結構相互吸附作用圖 74
圖4.11:去除苯(A)與甲苯(B)樣品的曲線圖 76
圖4.12:鈣藻光學干涉圖 77
圖4.13:鈣藻胞囊壁晶體的C軸方位圖-1 78
圖4.13:鈣藻胞囊壁晶體的C軸方位圖-2 79
圖4.13:鈣藻胞囊壁晶體的C軸方位圖-3 80
圖4.14:鈣藻二倍體(A)與單倍體(B)鈣化作用的生命週期 80
圖4.15:標準貫入試驗(SPT)數據推估矽砂液化的等效週期應力比(CSR)曲線圖 82
圖4.16:鈣砂內部孔隙未膠結的顯微圖 83
圖4.17:矽砂與鈣砂的粒徑分佈曲線圖 84
圖4.18:鈣砂在剪力荷載試驗的臨界狀態線(CSL)曲線圖 85
圖4.19:矽砂的循環三軸試驗(CIU TEST)曲線圖 86
圖4.20:鈣砂的循環阻力試驗(RCT)曲線圖 87
圖4.21:砂在XRD射線衍射圖 90
圖4.22:水泥砂漿28天的吸水率 90
圖4.23:水泥砂漿28天的抗壓強度 91
圖4.24:水泥砂漿28天的SEM分析圖 92
圖4.25:水泥砂漿含碳酸鈣成份的EDAX分析圖 93
圖4.26:簡化的水平潛流-人工濕地CLPP樣品取樣特徵圖 95
圖4.27:不同類型的生物水泥砂結構 96
圖4.28:混凝土磚牆與人工珊瑚 97

一、中文文獻:
[1] 劉玉山 (2009),植物根的向地性(Root Gravitropism),國科會高瞻計畫資源平台中學教材示範網頁,2009-07-10 (Taiwan)。
二、英文(德文)文獻:
[2] A Gravity Investigation of the Pitch Lake of Trinidad and Tobago, Geological Society of Trinidad & Tobago. 22 Nov 2005.
[3] Abo-El-Enein, S.A., Ali, A.H., Fatma N. Talkhan, Abdel-Gawwad, H.A., Application of Microbial Biocementation To Improve The Physico-Mechanical Properties of Cement Mortar, Received 1 March 2012, Accepted 30 April 2012, Available online 12 February 2013.
[4] Ayhan Gurbuz, Yasin Dursun Sari, Zehra Nur Yuksekdag, Berat Cinar (2011), Cementation in A Matrix of Loose Sandy Soil using Biological Treatment Method, Afr. J. Biotechnol. 10 (38) 7432–7440.
[5] Cartlidge Edwin, Superconductivity Record Sparks Wave of Follow-up Physics. Nature News. 18 August 2015.
[6] Cataño, J.; Pando, M.A. (2010), Static and Dynamic Properties of A Calcareous Sand From Southwest Puerto Rico, GeoFlorida, American Society of Civil Engineers (ASCE), West Palm Beach, Florida, USA, February, 842-851.
[7] Chaney, R. C.; Slonim, S. M.; Slonim, S. S. (1982), Determination of Calcium Carbonate Content in Soils, Geotechnical Properties, Behavior and Performance of Calcareous Soils, ASTM Special Technical Publication 777, 3-15.
[8] Chen, H.-J. (How-Ji Chen), Yang Mingder, Tsai, W.-P. (Wen-Po Tsai) and Chang, Y.-H. (Yung-Hsuan Chang), Mircobial Sediment Solidification, Applied Mechanics and Materials, vol.117-119, pp.1014-1017, 2012. (EI)
[9] Chou, C.-W. (Chiung-Wen Chou), Eric Seagren, Ahmet Aydilek, Timothy Maugel, Bacterially-Induced Calcite Precipitation via Ureolysis, American Society for Microbiology, 11 November 2008. Retrieved 20 February 2010.
[10] Chuang, C.-S. (Chih Shen Chuang), Wang, M.-K. (Ming-Kuang Wang), Ko, C.-H. (Chun-Han Ko), Ou, C.-C. (Chia-Chih Ou), Wu, C.-H. (Chien-Hou Wu), Removal of Benzene and Toluene by Carbonized Bamboo Materials Modified with TiO2. Bioresource Technology (2008) 99: 954–958. Received 5 November 2006; Received in Revised form 8 March 2007; Accepted 8 March 2007, Available online 24 April 2007.
[11] Claus, D. (1965), Anreicherung und Direktisolierung aerober sporenbildender Bakterien. In Schlegel, pp 337–362, 1965.
[12] De Vos, P. et al., Bergey''s Manual of Systematic Bacteriology: Volume 3: The Firmicutes. Springer, 2009.
[13] Ding S.W., Li W.X. (2001), Viral Suppressors of RNA silencing. Curr Opin Biotechnol. 2001, 12 (2): 150–4. PMID 11287229.
[14] Dieter Seebach, Albert K. Beck, Richard Breitschuh, and Kurt Job, Direct Degradation of the Biopolymer Poly, (R)-3-Hydroxybutanoic Acid and Its Methyl Ester. Org. Synth. 1993, 71, 39. DOI: 10.15227/orgsyn.071.0039.
[15] Drozdov, A.P., Eremets, M. I., Troyan I. A., Ksenofontov, V. and Shylin, S. I. (2015), Conventional Superconductivity at 203 Kelvin at High Pressures in The Sulfur Hydride System, Nature. DOI: 10.1038/Nature14964.
[16] Dusenbery, David B. (2009), Living at Micro Scale, pp. 164-167. Harvard University Press, Cambridge, Mass. ISBN 978-0-674-03116-6.
[17] Doi, Y.; Steinbuchel, A. Biopolymers (2002), Weinheim, Germany: Wiley-VCH.
[18] Eimar A. Sandoval and Miguel A. Pando, Experimental Assessment of the Liquefaction Resistance of Calcareous Biogenous Sands, Manuscript Received: 15/11/2011, Accepted for Publications: 25/05/2012.
[19] Elbrächter, M., Gottschling, M., Hildebrand-Habel, T., Keupp, H., Kohring, R., Lewis, J., Meier, K.J.S., Montresor, M., Streng, M., Versteegh, G.J.M., Willems, H. & Zonneveld, K.A.F. (2008), Establishing an Agenda for Calcareous Dinoflagellate Research (Thoracosphaeraceae, Dinophyceae) Including A Nomenclatural Synopsis of Generic Names.- Taxon, 57: 1289-1303.
[20] Fitzpatrick, R.W.; Le Roux, J. (1975 a), pp. 344-375. In: M.E. Summer (ed.). Mineralochemical Studies on Titaniferous Red Soils of Varying Base Status and Structure. Proc. Soil Sci. Soc. S. Africa. 6th Congr., Pretoria.
Fitzpatrick, R.W.; Le Roux, J. (1975 b), Pedogenic and Solid Solution Studies on Irontitanium Oxides. pp. 585-599. In: S.W. Bailey (ed.). Proc. Int. Clay Conf. Mexico City, Applied Publ. Ltd., Wilmette, IL.
[21] GIA Gem Reference Guide (1995), Gemological Institute of America, ISBN 0-87311-019-6.
[22] Gabelich, Christopher J., Tran Tri D. and Suffet I. H. (2002), Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels. Metropolitan Water District of Southern California, La Verne, California 91750, Lawrence Livermore National Laboratory, Livermore, California 94550, and University of California, Los Angeles, California 90624. Environ. Sci. Technol., 2002, 36 (13), pp 3010–3019. DOI: 10.1021/es0112745.
[23] Gert Wörheide, Joachim Reitner (2005), Biomineralisation - Verbundstoffe aus der Urzeit, Marine coralline Schwämme als Modell, Georgia Augusta; Vol. 4.2005, p. 22-27. Erstveröffentlichung: 2005. Artikel Verlagsversion Deutsch.
[24] Greenwood, N.N.; Earnshaw, A. (1997), Chemistry of the Elements 2nd Edition. Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
[25] Goris, J.; et al. (2001), Classification of Metal-Resistant Bacteria from Industrial Biotopes as Ralstonia Campinensis sp. Nov., Ralstonia Metallidurans sp. Nov. and Ralstonia Basilensis Steinle et al. 1998 Emend. Int J Syst Evol Microbiol 51 (Pt 5): 1773–1782. DOI: 10.1099/00207713-51-5-1773. PMID 11594608.
[26] Gordon J. F. Macdonald (Gordon James Fraser MacDonald) (1956), Experimental Determination of Calcite-Aragonite Equilibrium Relations at Elevated Temperatures and Pressures, Department of Geology and Geophysics, Massachusetts Institute of Technology, Cambridge, Mass.
[27] GEO (2006), Hamburger. August 2006.
[28] Hannich, D., Hötzl H., Cudmani R (2006), Einfluss des Grundwassers auf die Schadenswirkung von Erdbeben– ein Überblick. Grundwasser, Vol.11,4: 286-294.
[29] Harris, R.F.; D.F. Bezdicek (1994), Descriptive Aspects of Soil Quality/Health, pp.23-35. In Doran J.W., D.D. Coleman, D.F Bezdicek, and B.A. Stewart (eds). Defining Soil Quality for A Sustainable Environment. Soil Science Society of America, Special Publication NO.35.
[30] Henriksen, K., Stipp, S.L.S., Young, J.R. & Marsh, M.E. (2004): Biological Control on Calcite Crystallization: AFM Investigation of Coccolith Polysaccharide Function - American Mineralogist, 89: 1709-1716.
[31] Hidber, P.C., Graule, T.J., Gauckler, L.J. (1997), Influence of the Dispersant Structure on Properties of Electrostatistically Stabilized Aqueous Alumina Suspensions. J. Eur. Ceram. Soc. 17, 239–249.
[32] Hurlbut, Cornelius S.; Klein, Cornelis (1985), Manual of Mineralogy, 20th ed., Wiley, ISBN 0-471-80580-7.
[33] Idriss, I.M.; Boulanger, R.W. (2010), SPT-Based Liquefaction Triggering Procedures, Report No. UCD/CGM-10/02, Center for Geotechnical Modeling, University of California at Davis, California, USA.
[34] Janofske, D. (1996), Ultrastructure Types in Recent Calcispheres - Bulletin de l´Institut Océanographique, Monaco, spec. 14(4): 295-303, 427-428, Proceedings 7th International Symposium on Biomineralization.
[35] Jochen Schwarz, Holger Maiwald, Standortgefährdung infolge seismisch induzierter Bodenverflüssigung und Nachweise in DIN EN 1998-5, Bautechnik, 2014, 91, 7.
[36] Kishida, H (1969), Characteristics of Liquefied Sands during Mino-owari, Tohnankai, and Kikui Earthquakes, Soil and Foundotions, JSMFE, Vo19. No.1.
[37] Lillie, R.J. (2005), Map of Tectonic Plates, U.S. Department of the Interior, National Park Service.
[38] Linke, W.F.; A. Seidell (1965), Solubilities of Inorganic and Metal Organic Compounds (4th ed.). Van Nostrand. ISBN 0-8412-0097-1.
[39] Mark Button, Kela Weber, Jaime Nivala, Thomas Aubron, Roland Arno Müller (2015), Community-Level Physiological Profiling of Microbial Communities in Constructed Wetlands - Effects of Sample Preparation. New York 2015. Received: 5 May 2015, Accepted: 5 November 2015. DOI: 10.1007/s12010-015-1921-7. ISSN 0273-2289.
[40] Marsh, K. L., Sims, G. K. and Mulvaney, R. L. (2005), Availability of Urea to Autotrophic Ammonia-Oxidizing Bacteria as Related to the Fate of 14C- and 15N-Labeled Urea Added to Soil. Biol. Fert. Soil. 42:137–145.
[41] Meldrum, F.; Hyde, S.T. (2001), Morphological Influence of Magnesium and Organic Additives on the Precipitation of Calcite. J. of Crys. Growth 231, 544-558.
[42] Morelock, J.; Ramirez, W. (2004), Marine Sediments, Marine Geology - http://geology.uprm.edu/Morelock/GEOLOCN_/sedimt.htm (last accessed February 2006).
[43] Morse, J. W.; Mackenzie, F. T. (1990), Geochemistry of Sedimentary Carbonates, Elsevier Science Publishers B. V., Amsterdam, Holland, 707 pp.
[44] Mohammad Abdul Bakir, Takuji Kudo and Yoshimi Benno (2008), Microbacterium Hatanonis sp. Nov., Isolated as A Contaminant of Hairspray. International Journal of Systemic and Evolutionary Microbiology. 2008, 58 (Pt 3): 654–658. DOI:10.1099/ijs.0.65160-0. PMID 18319473.
[45] Niigata Earthquake (1964), Japan National Committee on Earthquake Engineering, Proceedings of the 3rd World Conference in Earthquake Engineering, Volume III, pp s.78-s.105.
[46] Nichlsen, M.N.; Winding, A. (2002), Microorganisms as Indication of Soil Health. National Environmental Research Institute, Ministry if the Environment, Denmark. NERI Technical Report No. 388.
[47] Nivala, J., Headley, T., Wallace, S., Bernhard, K., Brix, H., van Afferden, M., & Müller, R. A. (2013). Comparative Analysis of Constructed Wetlands: The Design and Construction of the Ecotechnology Research Facility in Langenreichenbach, Germany. Ecological Engineering, 61(Part B), 527–543.
[48] Pauling, Linus: General Chemistry, Dover Publishing, 1970, p450.
[49] Peter Agre ; Roderick MacKinnon (2003), Molecular channels let us enter the chemistry of the cell. The Nobel Prize in Chemistr, Nobelprize.org. Nobel Media AB 2014. Web. 11 May 2016. -http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2003/press.html
[50] Ramakrishnan, V., Deo, K.S., Duke, E.F., Bang, S.S., SEM Investigation of Microbial Calcite Precipitation in Cement, In: Proceeding of the International Conference on Cement Microscopy, Las Vegas, Nevada, 1999, pp. 406–414.
[51] Robertson, P.K. (1994), Suggested Terminology for Liquefaction, 47th Canadian Geotechnical Conference, Halifax, Canada, September, 277-286.
[52] Robertson, P. K.; Wride, C.E. (1998), Evaluating Cyclic Liquefaction Potential using the Cone Penetration Test, Canadian Geotechnical Journal. 35, no. 3, 442-459.
[53] Rosa Margesin, Manfred Schneider, Franz Schinner (1995), Praxis der mikrobiologischen Bodensanierung, Österreich. Springer-Verlag Berlin, Heidelberg, 1995. ISBN: 978-3-540-59014-9. DOI:10.1007/978-3-642-85196-4.
[54] Sebastian Meier, K.J., Nicole Engemann, Marc Gottschling & Rolf Kohring (2011), Die Bedeutung der Struktur der Zystenwand. Kalkiger Dinoflagellaten (Thoracosphaeraceae, Dinophyceae), Berl paläobiol Abh 10, 245-256 (2008), Berliner paläobiologische Abhandlungen 10 245-256 Berlin 2009-11-11.
[55] Seed, H.B.; Idriss, I.M. (1971), Simplified Procedure for Evaluating Soil Liquefaction Potential, JSMFD, ASCE, Vol.97, No.SM9, pp.1249-1273.
[56] Stephen Marshak (2012), Essentials of Geology (4th ed.). Norton, W. W. & Company, Inc. ISBN-13 9780393919394.
[57] St Mary''s Chapel, Caithness, Scotland & Natural History Museum, London - https://www.nhm.ac.uk
[58] Tsai, W.-P. (Wen-Po Tsai), Liao, H.-W. (Hui-Wen Liao), Chen, H.-J. (How-Ji Chen) and Jane, K.-C. (Kuo-Chang Jane), A Research of Reservoir Sediment Solidification using Biotechnology, Advanced Materials Research, vol.610-613, pp.2761-2765, 2013. (EI)
[59] Uta Magdans (2005), Mechanismen der Biomineralisation von Calcit am Beispiel von Seeigel-Stacheln: Untersuchung der Wechselwirkung zwischen Sorbat-Molekülen und Calcit-Wachstumsgrenzflächen mit Oberflächen-Röntgenbeugung und numerischen Simulationen. Fakultät für Geologie, Mineralogie und Geophysik, Institut für Mineralogie/ Kristallographie. Ruhr-Universität Bochum.
[60] Variovorax Paradoxus (Davis, 1969, Willems et al., 1991.)
[61] Ajit Varki, Richard D. Cummings, Jeffrey D. Esko, Hudson H. Freeze, Gerald W. Hart, Marth J. (1999), Essentials of Glycobiology. NY: Cold Spring Harbor Laboratory Press.
[62] Viktor Stabnikov, School of Civil & Environmental Engineering Nanyang Technological University, Singapore. Stabnikov V, Ivanov V, Chu J., Construction Biotechnology: A New Area of Biotechnological Research and Applications. World J Microbiol Biotechnol. Sep 2015.
http://atlasofscience.org/new-role-of-microbes-in-the-construction-industry/
[63] Weber, Kela P., Grove, J.A., Gehder, M., Anderson, W.A., Legge, R.L. (2007). Data Transformations in the Analysis of Community-Level Substrate Utilization Data from Microplates. Journal of Microbiological Methods, 69, 461–469.
[64] Weber, Kela P.; Legge, R. (2010), in Bioremediation, vol. 599: Methods inMolecular Biology, (Cummings, S.P., ed.), Humana Press, pp. 263-281.
[65] Weber Kela P.; Gagnon Vincent (2014), Microbiology in Treatment Wetlands. Sust Sanit Pract, 18, 25–30.
[66] Yoshiharu Doi, Masao Kunioka, Yoshiyuki Nakamura, Kazuo Soga (1988), Nuclear Magnetic Resonance Studies on Unusual Bacterial Copolyesters of 3-Hydroxybutyrate and 4-Hydroxybutyrate. Macromolecules. 1988, 21 (9): 2722–2727. DOI: 10.1021/ma00187a012.
三、日文文獻:
[67] 宮川博史 (2011), 原核生物-磁性細菌-, 北海道医療大学歯学雑誌, 巻30, 号2, 174.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top