(34.237.52.11) 您好!臺灣時間:2021/05/18 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:莊佳于
研究生(外文):Chia-Yu Chuang
論文名稱:震盪水柱式波能擷取裝置之水動力特性試驗研究
論文名稱(外文):Experiments on Hydrodynamic Characteristics of Wave Energy Absorber with Oscillating Water Column
指導教授:蔡清標蔡清標引用關係
指導教授(外文):Ching-Piao Tsai
口試委員:蕭士俊葉博弘
口試委員(外文):Shi-jun HsiaoBo-Hong Ye
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:波浪發電震盪水柱式反射率
外文關鍵詞:Wave PowerOscillating Water ColumnReflection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
波浪發電系統的研究在各國已行之有年,在眾多波能發電裝置中又以震盪水柱式(Oscillating Water Column ,OWC)波能擷取裝置之發展最久也有最多研究探討。本研究以模型試驗的方式針對Tsai (2016) 新型波能擷取裝置在不同波浪條件下,探討其艙室內波形變化、受波壓情形,以及震盪水體與風速的關係,並利用高速攝影機搭配雷射技術進行流場可視化拍攝。再和Boccotti(2007)之U型OWC及傳統OWC特性進行比較。
OWC裝置內之水柱在震盪時將會壓縮空氣並於上方開孔處產生風速,當水柱水位上升時空氣將會自開孔擠出;水位下降時空氣則會自開孔處吸入(Morris et al., 2007)。本研究經試驗顯示,由於新型波能擷取裝置之震盪水柱及波形變化相當穩定,因此裝置內受到水柱壓縮所產生的風速亦具有穩定之特性。本研究探討不同波浪條件下,比較裝置所產生之風速及OWC其相對寬度與反射率、波壓關係。由試驗結果顯示,當相對寬度B/L(B : OWC內部寬度,L : 波長)越小其所能擷取之風速就越大;且隨著波浪Ursell參數越大則有較大的擷取風速;在反射率及波壓部分,研究顯示當B/L約為0.16時,其在降低反射率及波壓效果最佳。本文進一步探討新型OWC與U型、傳統型OWC裝置之差異,得知本研究之新型OWC不只有較佳的波能擷取效果,亦有較小的波浪反射率及受壓力。


The study of the wave power capture system has been gone for years around the world. Among the variety types of ocean wave energy absorbed system, the Oscillating Water Column (OWC) system could be considered a major, it has been evaluated for decades with many investigations of. This paper presents a new type of wave energy absorber embodying OWC system from Tsai (2016), and discussing its hydrodynamic characteristics adopted different wave definitions by physical model tests in this study. The experimental tests measured the oscillation of water column and used the high speed camera with laser system to do flow visualization. The study also compare with the U-OWC from Boccotti (2007) and the conventional OWC.
When the water column of the air chamber oscillating by the waves, it will compress the air and generate the wind speed at the device. When the water column rise up it will cause the air flow out from the device, and flow in when it comes down. From the stabilization of water column variation, the wind speed caused by the water column will also be stabilize. The study adopted different wave definitions to discuss the relation between the wind speed and the wind power and the relation between the relative width and the wave reflection from OWC, the wave pressure on the OWC. The result shows the smaller of the relative width B/L(B : the width of OWC, L : the wavelength) of OWC and the larger of the Ursell parameter of incident wave induce the larger of the wind speed which it was generated and produced much more wind power in the different incident wave height conditions. On the other hand the result indicates that the wave reflection from OWC and the wave pressure on the OWC is minimal when B/L is about 0.16.The study also compare with the U-OWC and the conventional OWC, the result shows that the present absorber not only capture more wind power than the U-OWC and the conventional OWC but also the wave reflection from OWC and the wave pressure on the OWC is less than the other two.


摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
照片目錄 xi
符號說明 xiii
第一章 前言 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究目的 5
1-4 研究方法 8
1-5 本文架構 9
第二章 模型試驗 11
2-1 試驗設備 11
2-2 試驗流程 18
2-3 試驗配置 20
2-3-1 儀器架設 20
2-3-2 試驗儀器率定 26
2-3-3 試驗條件 27
2-4 試驗方法 29
2-4-1 波形量測 29
2-4-2 風速量測 29
2-4-3 波壓量測 29
2-4-4 流場可視化 30
第三章 結果與分析 32
3-1 震盪水柱之波形變化 32
3-2 震盪水柱之波流場變化 44
3-3 風能分析 55
3-4 反射率與波壓分析 59
3-4-1 反射率 59
3-4-2 波壓 60
3-5 與U型OWC及傳統型OWC比較 64
3-5-1 U型OWC及傳統型OWC之震盪水柱波形分析 64
3-5-2 U型OWC及傳統型OWC之震盪水柱之流場變化 71
3-5-3 U型OWC及傳統型OWC之風能分析 79
3-5-4 U型OWC及傳統型OWC之反射率與波壓分析 82
第四章 結論與建議 88
4-1 結論 88
4-2 建議 90
參考文獻 91


1.蔡清標(Tsai,Ching-Piao)。2016。「波浪能擷取裝置與波浪發電系統」。中華民國發明專利,發明字號I515362。
2.Boccotti, P. (2006) “Caisson breakwaters embodying an OWC with a small opening-part I : Theory,” Ocean Engineering, Vol. 34, pp. 806–819.
3.Boccotti, P., Filianoti, P., Fiamma, V., and Arena, F. (2007) “Caisson breakwaters embodying an OWC with a small opening-part II : a small-scale field experiment,” Ocean Engineering, Vol. 34, pp. 820–841.
4.Boccotti, P. (2007) “Comparison between a U-OWC and a Conventional OWC,” Ocean Engineering, pp.799–805.
5.Delaure, Y. M. C., and Lewis, A. (2000) “A comparison of OWC response prediction by a boundary element method with scaled model test result,” Proceedings of 4th European wave energy conference, pp.275–282.
6.Dorrell, D. G., Hsieh, M. F., and Lin C. C. (2010) “A Small Segmented Oscillating Water Column Using a Savonius Rotor Turbine,” IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, Vol. 46, NO. 5
7.Evans, D. V. (1978) “Oscillating water column wave energy convertors,” IMA Journal of Applied Mathematics, Vol. 22, pp. 423–433.
8.Evans, D. V. (1982) “Wave power absorption by systems of oscillating surface pressure distributions,” Journal of Fluid Mechanics, Vol. 114, pp. 481–499.
9.Falcão, A. F. O. (2010) “Wave energy utilization : a review of the technologies,” Renewable & Sustainable Energy Reviews, Vol. 14, pp. 899–918.
10.Goda, Y., and Suzuki, Y. (1976) “Estimation of incident and reflected waves in random wave experiments,” Proceedings of the 15th Conference on Coastal Engineering, ASCE, pp. 828–845.
11.He, F., Li, M., and Huang, Z. (2016) “An Experimental Study of Pile-Supported OWC-Type Breakwaters : Energy Extraction and Vortex-Induced Energy Loss,” Energies, Vol. 9, pp.1–15.
12.Iturrioz, A., Guanche, R., and Lara, J. L. (2015) “Validation of OpenFOAM for oscillating water column three-dimensional modeling, ” Ocean Engineering, Vol. 107, pp.222–236.
13.Kamath, A., Bihs, H., and Arntsen, Ø. A. (2015) “Numerical investigations of the hydrodynamics of an oscillating water column device,” Ocean Engineering, Vol. 102, pp.40–50.
14.Lighthill, J. (1979) “Two-dimensional analyses related to wave-energy extraction by submerged resonant ducts,” Journal of Fluid Mechanics, Vol. 91, pp.253–317.
15.Luo, Y., Nader, J. R., Cooper, P., and Zhu, S. P. (2014) “Nonlinear 2D analysis of the efficiency offixed oscillating water column wave energy converters,” Renewable Energy, Vol. 64, pp.255–265.
16.Martins-Rivas, H., and Mei, C. C. (2009) “Wave power extraction from an oscillating water column at the tip of a breakwater,” Journal of Fluid Mechanics, Vol.626, pp.395–414
17.Miles, J. W. (1982), “On surface-wave radiation from a submerged cylindrical duct.,” Journal of Fluid Mechanics, Vol.122, pp.339–346.
18.Morris, T., Irvin, R. J., and Thiagarajan, K. P. (2007) “An investigation into the hydrodynamic efficiency of an oscillating water column,” J. Offshore and Mech. Arct. Engineering, Vol.129, pp.273–278.
19.Ning, D., Wang, R., Zou, Q., and Teng, B. (2016) “An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter,” Applied Energy, Vol.168, pp.636–648
20.Oumeraci, H. (2010) “Nonconventional wave damping structures,” Handbook of Coastal and Ocean Engineering, World Scientific, pp.287–315
21.Pinson, P., Reikard, G., and Bidlot, J. R. (2012) “Probabilistic forecasting of the wave energy flux, ” Applied Energy , Vol.93, pp.364–370.
22.Rezanejad, K., Bhattacharjee, J., and Soares, C. G. (2015) “Analytical and numerical study ofdual-chamber oscillating water columns on stepped bottom, ” Renewable Energy , Vol.75, pp.272–282.
23.Sarmento, A. J. N. A., and Falcão, A. F. O. (1985) “Wave generation by an oscillating surface pressure and its application in wave energy extraction ,” Journal of Fluid Mechanics, Vol.150, pp.467–485.
24.Simon, M. J. (1981) “Wave-energy extraction by a submerged cylindrical duct ,” Journal of Fluid Mechanics , Vol.104, pp.159–187.
25.Suh, K. D., Park, W. S., and Park, J. K. (2006) “Wave reflection from partially perforated-wallcaisson breakwater, ” Ocean Engineering, Vol.33, pp.264–280.
26.Teixeira, P. R. F., Davyt, D. P., Didier, E., and Ramalhais, R. (2013) ”Numerical simulation of anoscillating water column device using a code based on Navier-Stokesequations,” Renewable Energy Vol.61, pp. 513–530
27.Tseng, R. S., Wu, R. H., and Huang, C. C. (2000) “Model study of a shoreline wave-power system,” Ocean Engineering, Vol.27, pp. 801–821.
28.Veigas, M., López, M., and Iglesias, G. (2014) “Assessing the optimal location for a shorelinewave energy converter,” Applied Energy, Vol.132, pp. 404–411.
29.Zhang, Y., Zou, Q. P., and Greaves, D. (2012) “Air-water two phase flow modelling of hydrodynamic performance of an oscillating water column device,” Renewable Energy Vol.41, pp. 159–170.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top