跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許得美
研究生(外文):De-Mei Hsu
論文名稱:使用網版印刷電極對土壤微生物之伏安法分析
論文名稱(外文):Voltammetric Analysis of Soil Microbes Using Screen-printed Electrodes
指導教授:陳鴻基陳鴻基引用關係曾志明曾志明引用關係
指導教授(外文):Horng-Ji ChenJyh-Myng Zen
口試委員:譚鎮中簡宣裕李泰林
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:126
中文關鍵詞:黏土礦物超音波快速篩檢電化學分析地衣芽孢桿菌釀酒酵母菌大腸桿菌
外文關鍵詞:Clay mineralUltrasonic waveFast-screening detectionElectroanalysisBacillus licheniformisSaccharomyces cerevisiaeEscherichia coli
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  土壤中存在有各式各樣的微生物,其在土壤化學、土壤肥力和作物生長上扮演非常重要的角色。傳統上常見之鑑別微生物的方法是透過選擇性培養基去篩選,較少見透過電化學快速、簡便的偵測方法來分析各菌種特性。因此,本論文研究目的要以較具有電化學活性的 Fe(CN)63- 及 Ru(NH3)63+ 當作探針化合物,利用六種代表性黏土礦物修飾三極式網版印刷電極 (TESPE),來探討地衣芽孢桿菌 (革蘭氏陽性菌,G+)、釀酒酵母菌 (真菌) 及大腸桿菌 (革蘭氏陰性菌,G–) 菌體表面的電化學反應,並進一步搭配超音波震盪以瞭解不同細菌種類特性。試驗結果指出,PFl-1 與地衣芽孢桿菌混合液修飾電極對 Fe(CN)63-偵測到的氧化還原波峰電流量隨第一圈到第五圈逐漸下降,且氧化波峰形狀較為尖銳,由電極表面的掃描式電子顯微鏡圖可明顯看到地衣芽孢桿菌的形狀。SWy-1 與菌混合修飾電極對 Fe(CN)63- 偵測到的還原波峰形狀較為駝形,其還原波峰電流量隨掃描第一圈到第五圈呈現有規則性逐漸減少的現象。SWy-1 與地衣芽孢桿菌混合修飾電極對 Ru(NH3)63+ 測到的氧化還原波峰電流量比 SWy-1 修飾電極所測到的小很多。由黏粒修飾電極的電化學分析結果顯示以 Fe(CN)63- 作為探針分子較 Ru(NH3)63+ 能顯現地衣芽孢桿菌在電化學反應上的特色。
  由酵母菌搭配六種黏土礦物對 Fe(CN)63- 偵測的五圈循環伏安圖與大腸桿菌的情形有所不同,以第五圈伏安圖之還原波峰電流量來看,酵母菌均略大於大腸桿菌,且由第一圈還原波峰電位與第五圈還原波峰電位相比較,酵母菌加六種黏土礦物對 Fe(CN)63- 測到的五圈還原波峰之電位大部分都往更負電位偏移,但大腸桿菌就未有此現象。六種黏土礦物加大腸桿菌修飾電極對 Fe(CN)63- 測到第五圈的還原波峰電位都接近0 V。由上結果顯示,以 Fe(CN)63- 作為探針對兩種菌電化學特性上的探討得知,兩種菌外層的電化學反應確實有所不同,且隨著不同黏土礦物的交互作用會呈現不同的電化學反應。
  將以上三種菌進行超音波震盪處理,以期望獲得更好的訊號來分辨三種菌的特性。由掃描式電子顯微鏡圖發現黏粒與菌經超音波處理後分布得更為均勻,導致修飾膜層的孔隙度減少,因此降低了以 Ru(NH3)63+ 作為探針的波峰電流量,但以 Fe(CN)63- 作為探針所偵測到的還原波峰電流量之變化趨勢在不同菌種間有所不同。釀酒酵母菌對膨脹性黏土礦物 (SHCa-1、SWy-1和SWa-1) 有略為增加的情形,對非膨脹性黏土礦物 (KGa-1、PFl-1和VTx-1) 則無;大腸桿菌 (G–) 則因細胞壁構造較易遭超音波破壞,而使還原波峰電流量皆略為增加,其中以KGa-1增加的幅度最大,其次為VTx-1;地衣芽孢桿菌 (G+) 則無明顯的規律。因此,超音波處理搭配六種黏土礦物加菌修飾電極的電化學分析讓這三種菌膜層特性上的差異更能夠顯現出來,其中以PFl-1表現的差異性最大,證明此電化學分析方法在菌種鑑定上的可行性。

  In soils, various microorganisms have an important role in soil chemistry, soil fertility and crop growth. The traditional identification of soil microbes use the selective culturing methods, while they are not rapid or convenient method for analyzing bacterial characteristics comparing with the electrochemical analysis. In this research, Fe(CN)63- and Ru(NH3)63+ were used as chemical probes to study the electrochemical reaction of surface membrane in Bacillus licheniformis (Gram-positive bacteria, G+), Saccharomyces cerevisiae (fungus) and Escherichia coli (Gram-negative bacteria, G–) with various clay-modified three-electrode screen-printed electrode (TESPE). Furthermore, the ultrasonication was used to understand various bacterial characteristics. The results indicated that the redox peak currents of Fe(CN)63- at PFl-1 added bacterium modified electrode were decreased from first to fifth cycle and the shape of oxidative peak were sharper than other modified electrodes. Field emission SEM clearly showed the rob form of B. licheniformis on the electrode modified by PFl-1 added bacterium. At the SWy-1 added bacterium modified electrode, the reductive peak currents of Fe(CN)63- were found to regularly decrease from first to fifth cycle. Whereas, the decrease was not apperent for Ru(NH3)63+ at the electrode modified by SWy-1 added bacterium. Overall, Fe(CN)63- appeared a favorable probe for the electrochemical reaction of B. licheniformis on clay-modified electrodes.
  Five cyclic voltammograms of Fe(CN)63- detected by six clay minerals added S. cerevisiae were different from that of E. coli modified electrodes. The reductive peak currents of Fe(CN)63- at six clay added S. cerevisiae modified electrodes slightly larger than that of E. coli. To compare five reductive peak potential of S. cerevisiae might shift more negative potential, but E. coli were not. Fifth reductive peak potential of Fe(CN)63- tended to 0 V at six clay added E. coli modified electrodes. Fe(CN)63- is a good probe to investigate the different electrochemical properties of microbes due to the different electroanalysis of membrane character affected by the interaction of different clay minerals.
  Ultrasonication was used and expected to detect a better signal and distinguish three kinds of microbes. SEM profiles indicated the distribution of mrcrobes and clay minerals thought the ultrasonic treatment. The reducing peak current of Ru(NH3)63+ was affected by reducing the porosity of the modified film. Fe(CN)63- probe could indicated the changeable trend of reductive peak current of different microbes. For S. cerevisiae, the trend of reductive peaks increased slightly in expanding clay minerals (SHCa-1, SWy-1 and SWa-1), but non-expanding clay minerals (KGa-1, PFl-1 and VTx-1) were not. For E. coli (G–), the reductive peaks current are apparently increased at all kinds of clay modified electrode, especially KGa-1 increased largest due to the change of membrane character treated by ultrasonic wave. However, that are no obvious rule observed in B. licheniformis (G+). Thus, the electrochemical analysis of ultrasonic wave treatment coupling with different clay minerals added microbes modified electrode that better emerging the characteristics of experimental microorganisms. The probe of Fe(CN)63- determined by PFl-1 added microbes modified electrodes could prove feasible method of electreanalysis to investigate experimented microbes.

致 謝 i
摘 要 ii
Abstract iv
目 錄 vii
表 次 ix
圖 次 x
壹、前 言 1
貳、前人研究 4
一、 黏土礦物的結構與特性 4
二、 黏粒修飾電極與電化學分析 9
(一) 電化學分析方法介紹 9
(二) 黏粒修飾電極之應用 15
三、 土壤微生物與黏土礦物的交互作用 18
四、 超音波化學在黏土礦物上的應用 22
參、材料與方法 25
一、藥品 25
二、儀器 29
三、藥品配製 30
四、黏粒與B. licheniformis修飾電極的電化學分析研究 31
(一) 修飾電極的製備 31
(二) 黏粒與B. licheniformis修飾電極的電化學分析 32
(三) 掃描式電子顯微鏡觀測不同修飾電極表面 32
五、黏粒與S. cerevisiae及E. coli修飾電極的電化學分析研究 33
(一) 修飾電極的製備 33
(二) 黏粒與S. cerevisiae及E. coli修飾電極的電化學分析 34
(三) 掃描式電子顯微鏡觀測不同修飾電極表面 34
六、超音波處理之菌液與黏粒修飾電極的電化學分析研究 35
(一) 修飾電極的製備 35
(二) 超音波處理之菌液與黏粒修飾電極的電化學分析 36
(三) 掃描式電子顯微鏡觀測不同修飾電極表面 36
肆、結果與討論 37
一、以黏粒修飾電極探討地衣芽孢桿菌的電化學反應 37
(一) 修飾電極對鐵氰化鉀的電化學分析 40
(二) 修飾電極對氯化釕六氨錯合物的電化學分析 52
二、以黏粒修飾電極探討釀酒酵母菌及大腸桿菌的電化學反應 55
(一) 黏粒加菌修飾電極對鐵氰化鉀的電化學分析 60
(二) 黏粒加菌修飾電極對氯化釕六氨錯合物的電化學分析 69
三、以超音波處理之菌液與黏粒修飾電極的電化學反應 74
(一) 超音波黏粒加菌修飾電極對鐵氰化鉀的電化學分析 82
(二) 超音波黏粒加菌修飾電極對氯化釕六氨錯合物的電化學分析 98
伍、結 論 110
陸、參考文獻 112
附錄、電極代號說明 126

王文毅、陳鴻基、曾志明。2013a。烷銨插層黏粒修飾電極對標準添加二價汞之偵測。台灣農學會報 14:33-51。
王文毅、朱家瑩、陳鴻基、曾志明。2013b。以多鐵蒙特石鍍金修飾電極對土壤二價汞之偵測研究。台灣農學會報 14:184-206。
朱家瑩、陳鴻基、曾志明。2013。以黏粒修飾電極探討對硝基苯酚的電化學反應。台灣農學會報14:607-630。
朱家瑩、陳鴻基、曾志明。2014。黏土礦物層面電荷在苯二酚電化學行為之影響。台灣農學會報15:276-296。
吳璧羽。2015。坡縷石與微生物的混合施用在蔬菜生長上的影響。國立國立中興大學土壤環境科學系研究所碩士論文。
李國鏞、游若荻。1988。微生物學。臺北:華香園出版社。
林季融、陳鴻基、曾志明。2009。黏粒溶磷菌修飾電極的電化學分析研究。台灣農學會報 10:286-306。
林季融、陳鴻基、曾志明。2011。黏土礦物對土壤細菌生長影響之研究。台灣農學會報 12:164-185。
姚開元、陳鴻基、曾志明。2010。多鐵蒙特石修飾鍍銅電極之電化學反應研究。台灣農學會報11:524-542。
翁千翔。2009。光還原奈米金於二氧化鈦之電化學研究。國立國立中興大學化學系研究所碩士論文。
陳鴻基、李國欽、莊作權。1995。利用黏粒修飾電極探討巴拉刈在黏土礦物膜層中的移動性。中華民國雜草學會會刊 16:1-13。
陳鴻基、曾志明。2003a。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報 52:1-19。
陳鴻基、曾志明。2003b。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報 4:429-446。
曾綉丹、陳鴻基、曾志明。2012a。以黏粒修飾電極法探討對苯二酚的電化學反應。台灣農學會報 13:84-106。
曾綉丹、陳鴻基、曾志明。2012b。巴拉刈在黏粒修飾電極對鄰苯二酚電化學分析上的影響。台灣農學會報 13:595-616。
榮興民、黃巧雲、陳雯莉、梁巍。2008。土壤礦物與微生物相互作用的機理及其環境效應。生態學報 28:376-387。
劉俊良。2009。可攜式酵母菌微生物燃料電池系統與發電特性研究。國立國立中興大學精密工程研究所碩士論文。
鄭世堃、陳鴻基、曾志明。2007。以電化學方法探討烷基銨插層膨潤石類之表面電荷特性。中華農學會報 8:336-354。
Ams, D.A., J.B. Fein, H. Dong, and P.A. Maurice. 2004. Experimental Measurements of the Adsorption of Bacillus subtilis and Pseudomonas mendocina Onto Fe-Oxyhydroxide-Coated and Uncoated Quartz Grains. Geomicrobiol. J. 21:511-519.
An, N., C.H. Zhou, X.Y. Zhuang, D.S. Tong, and W.H. Yu. 2015. Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. clay. Sci. 114:283-296.
Arbianti, R., H. Hermansyah, T.S. Utami, N.C. Zahara, I. Trisnawati, and E. Kristin. 2012. The usage of Saccharomyces cerevisiae in microbial fuel cell system for electricity energy production. J. Chem. Chem. Eng., 6:814-819.
Bard, A.J., and L.R. Faulkner. 2001. Electrochemical Methods. 2nd ed. New York: John Wiley & Sons. pp. 226-260.
Bazureau, J.P., and M. Draye. 2011. Ultrasound and Microwaves: Recent Advances in Organic Chemistry. Transworld Research Network, Kerala. p. 241.
Bennis, S., F. Chami, N. Chami, T. Bouchikhi, and A. Remmal. 2004. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol. 38:454–458.
Brevik, E.C., and T.J. Sauer. 2015. The Past, present, and future of soils and human health studies. Soil 1:35-46.
Cai, X., J.L. Zhang, Y. Ouyang, D. Ma, S.Z. Tan, and Y.L. Peng. 2013. Bacteria-adsorbed palygorskite stabilizes the quaternary phosphonium salt with specific-targeting capability, long-term antibacterial activity, and lower cytotoxicity. Langmuir 29:5279-5285.
Campo Dall''Orto, V., J.M. Vago, R.R. Carballo, and I.N. Rezzano. 2005. Comparison of tyrosinase biosensor and colorimetric method for polyphenol analysis in different kinds of Teas. Anal. Lett. 38:19-33.
Carmona-Martínez, A.A., F. Harnisch, U. Kuhlicke, T.R. Neu, and U. Schröder. 2013. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry. 93:23-29.
Carrado, K.A. 2004. Active sites on clay minerals, In: Handbook of Layered Materials, Eds: S. M. Auerbach, K. A. Carrado, P. K. Dutta and K. A. Carrado, CRC Press, 158–166.
Chatel, G., and D.R. MacFarlane. 2014. Ionic liquids and ultrasound in combination: synergies and challenges. Chem. Soc. Rev. 43:8132-8149.
Chemat, F., Zill-e-Huma, and M.K. Khan. 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason. Sonochem. 18:813-835.
Chenu, C., and G. Stotzky. 2002. Interactions between microorganisms and soil particles: an overview. In: P.M. Huang, J.M. Bollag, and N. Senesi (Eds.), Interactions between soil particles and microorganisms, New York: John Wiley & Sons, Inc, 3-40 pp.
Cobley, A.J., T.J. Mason, and V. Saez. 2011. Review of effect of ultrasound on electroless plating processes. Trans. IMF. 89:303-309.
Colmenares, J.C. 2013. Ultrasound and photochemical procedures for nanocatalysts preparation: application in photocatalytic biomass valorization. J. Nanosci. Nanotechnol. 13:4787-4798.
Compton, R.G., J.C. Eklund, F. Marken, T.O. Rebbitt, R.P. Akkermans, and D.N. Waller. 1997a. Dual activation: coupling ultrasound to electrochemistry — an overview. Electrochim. Acta. 42:2919-2927.
Compton, R.G., J.C. Eklund, and F. Marken. 1997b. Sonoelectrochemical processes: a review. Electroanal. 9:509-522.
Cosnier, S., C. Innocent, L. Allien, S. Poitry, and M. Tsacopoulos. 1997. An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate. Anal. Chem. 69:968-971.
Cosnier, S., F. Lambert, and M. Stoytcheva. 2000. A composite clay glucose biosensor based on an electrically connected HRP. Electroanalysis 12:356-360.
Courvoisier, E., and S. Dukan. 2009. Improvement of Escherichia coli growth by kaolinite. Appl. Clay Sci. 44:67-70.
Cravotto G., and P. Cintas. 2007. Forcing and controlling chemical reactions with ultrasound. Angew. Chem. Int. Ed. 46: 5476-5478.
Cravotto, G., and P. Cintas. 2012. Harnessing mechanochemical effects with ultrasound-induced reactions. Chem. Sci. 3:295-307.
Cravotto, G., E.C. Gaudino, and P. Cintas. 2013. On the mechanochemical activation by ultrasound. Chem. Soc. Rev. 42:7521-7534.
Dai, Q.w., Y.L. Zhao, F.Q. Dong, B. Wang, and Y.B. Huang. 2014. Interaction between bentonite and Bacillus litoralis strain SWU9. Appl. clay. Sci. 100:88-94.
Deguchi, S., M. Tsudome, Y. Shen, S. Konishi, K. Tsujii, S. Ito, and K. Horikoshi. 2007. Preparation and characterisation of nanofibrous cellulose plate as a new solid support for microbial culture. Soft Matter 3:1170-1175.
Dixon, J.B., and D.G. Schulze. 2002. Soil Mineralogy with Environmental Applications. Madison: Soil Sci. Soc. Amez., Inc. pp. 389-583.
Dong, H.L., D.P. Jaisi, J.W. Kim, and G.X. Zhang. 2009. Microbe-clay mineral interactions. American Mineralogist 94:1505-1519.
Eren, Z. 2012. Ultrasound as a basic and auxiliary process for dye remediation: a review. J. Environ. Manag. 104:127-141.
Esteve-Núñez, A., J.P. Busalmen, A. Berná, C. Gutiérrez-Garrán, and J.M. Feliu. 2011. Opportunities behind the unusual ability of Geobacter sulfurreducens for exocellular respiration and electricity production. Energy Environ. Sci. 4:2066-2069.
Farahnaky, A.; S.M.M. Dadfar, and M. Shahbazi. 2014. Physical and mechanical properties of gelatin–clay nanocomposite. J. Food Eng. 122:78-83.
Fomina, M. and G. M. Gadd. 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol. Res.106:107-117.
Galarneau, A., A. Barodawalla, and T.J. Pinnavaia. 1995. Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529-531.
Ghosh, P.K., and A.J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105:5691-5693.
Ghadiri, M., W. Chrzanowski, and R. Rohanizadeh. 2015. Biomedical Applications of Cationic Clay Minerals. RSC Adv. 5:29467-29481.
Gogate, P.R., P.A. Tatake, P.M. Kanthale, and A.B. Pandit. 2002. Mapping of sonochemical reactors: review, analysis, and experimental verification. 48:1542-1560.
Gomes, S.A.S.S., J.M.F. Nogueira, and M.J.F. Rebelo. 2004. An amperometric biosensor for polyphenolic compounds in red wine. Biosens. Bioelectron. 20:1211-1216.
Gómez-Mingot, M., J. Iniesta, V. Montiel, R.O. Kadara, and C.E. Banks. 2011. Screen printed graphite macroelectrodes for the direct electron transfer of cytochrome c. Analyst. 136:2146-2150.
Chatel, G., L. Novikova, and S. Petit. 2016. How efficiently combine sonochemistry and clay science? Appl. clay sci. 119:193-201.
Hassan, A.R.H.A.A., A. de la Escosura-Muñiz, and A. Merkoçi. 2015. Highly sensitive and rapid determination of Escherichia coli O157: H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens. Bioelectron. 67:511-515.
Heijnen, C.E., J. Postma, and J.A. van Veen. 1990. The significance of artificially formed and originally present protective microniches for the survival of introduced bacteria in soil. Problemy Pochvovedeniye 3:88-93.
Hemkemeyer M., G.J. Pronk, K. Heister, I. Kögel-Knabner, R. Martens, and C.C. Tebbe. 2014. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiol Ecol. 90:770-782.
Huang, P.M. 2008. Soil physical-chemical-biological interfacial interactions: An overview. In Huang, Q., P. M. Huang, and A. Violante (eds.) Soil Mineral--microbe-organic Interactions: Theories and Applications. Springer-Verlag, Berlin, Germany. pp.11-14.
Jinescu, C., V.A. Arus, O.C. Pârvulescu, and I.D. Nistor. 2014. Modelling of batch lactic acid fermentation in the presence of anionic clay. Food Technol. Biotechnol. 52:448-458.
Joo, P., A. Fitch, and S.H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31:2186-2192.
Kadara, R.O., N. Jenkinson, and C.E. Banks. 2009. Characterisation of commercially available electrochemical sensing platforms. Sensors Actuat. B. 138:556-562.
La Rochebrochard d''Auzay, S., J.F. Blais, and E. Naffrechoux. 2010. Comparison of characterization methods in high frequency sonochemical reactors of differing configurations. 17:547-554.
Lavie, S., and G. Stotzky. 1986. Adhesion of the clay minerals montmorillonite, kaolinite and attapulgite reduce of Histoplasma capsulatum. Appl. Environ. Microbiol. 51:65-73.
Lipson, S.M., and G. Stotzky. 1983. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area. Appl. Environ. Microbiol. 46:673-682.
Lojou, E., and P. Bianco. 2006. Layer-by-layer assemblies of montmorrilonite and bacterial cytochromes for bioelectrocatalytic devices. Electroanalysis 18:2426-2434.
Macha, S.M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta 128:1-18.
Maghear, A., M. Etienne, M. Tertiş, R. Săndulescu, and A. Walcarius. 2013. Clay-mesoporous silica composite films generated by electro-assisted self-assembly. Electrochim. Acta 112:333- 341.
Manisankar, P., G. Selvanathan, and C. Vedhi. 2006. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68:686-692.
Marshall, K.C. 1968. Interaction between colloidal montmorillonite and cells of Rhizobium species with different inogenic surfaces. Biochim. Biophys. Acta. 156 :179-186.
Marsili, E., D.B. Baron, I.D. Shikhare, D. Coursolle, J.A. Gralnick, and D.R. Bond. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. P. Natl. Acad. Sci. 105:3968-3973.
Mason, T.J. 1999. Sonochemistry. Oxford University Press. p. 92.
Mason, T.J. 2003. Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrason. Sonochem. 10:175-179.
Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27:159-177.
Mousty, C., S. Cosnier, M.S. Lopez, E. Lopez-cabarcos, and B. Lopez-Ruiz. 2007. Rutin determination at an amperometric biosensor. Electroanalysis 19:253-258.
Nasir Baig, R.B., and R.S. Varma. 2012. Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 41:1559-1584.
Navrátilová, Z., and P. Kula. 2003. Clay modified electrodes: present application and prospects. Electroanalysis. 15:837-846.
Nealson, K.H., and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311-343.
Ngameni, E., I.K. Tonlé, J.T. Apohkeng, R.G.. B. Bouwé, A.T. Jieumboué, and A. Walcarius. 2006. Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis 18:2243-2250.
Nikitenko, S.I., C. Le Naour, and P. Moisy. 2007. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. 14:330-336.
Novikova, L.A., F.L. Roessner, I. Belchinskaya, M. Alsawalha, and V.V. Krupskaya. 2014. Study of surface acid–base properties of natural clays and zeolites by the conversion of 2-methylbut-3-yn-2-ol. Appl. clay sci. 101:229-236.
Okamoto A., R. Nakamura, and K. Hashimoto. 2011. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes. Electrochim. Acta. 56:5526-5531.
Paiva, L.B., A.R. Morales, and F.R. Valenzuela Díaz. 2008. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 42:8-24.
Pentráková, L., K. Sui, M. Pentrák, and J.W. Stucki. 2013. A review of microbial redox interactions with structural Fe in clay minerals. Clay Miner. 48:543-560.
Petridis, D., P. Falaras, and T.J. Pinnavaia. 1992. Self-assembly of ion-paired electron-transfer centers in a clay-modified electrode. Inorg. Chem. 31:3530-3533.
Qian, D.I., C. Nakamura, S.O. Wenk, H. Ishikawa, N. Zorin, and J. Miyake. 2002. A hydrogen biosensor made of clay, poly (butylviologen) and hydrogenase sandwiched on a glass carbon electrode. Biosens. Bioelectron. 17:789-796.
Raghavulu, S.V., R.K. Goud, P.N. Sarma, and S.V. Mohan. 2011. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresour. Technol. 102:2751-2757.
Rahimnejad, M., G.D. Najafpour, A.A. Ghoreyshi, F. Talebnia, G.C. Premier, G. Bakeri, J.R. Kim, and S.E. Oh. 2012. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol., 50:575-580.
Rao, M.A., L. Gianfreda, F. Palmiero, and A. Violante. 1996. Soil Sci. Interactions of acid phosphatase with clays, organic molecules and organo-mineral complexes. 161:751-760.
Rawson, F.J., A.J. Downard, and K.H. Baronian. 2014. Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae. Scientific Reports 4:1-9.
Rosenzweig, W.D., and G. Stotzky. 1979. Influence of environmental factors on antagonism of fungi by bacteria in soil: clay minerals and pH. Appl. Environ. Microbiol. 38:1120.1126.
Rosenzweig, W.D., and G. Stotzky. 1980. Influence of environmental factors on antagonism of fungi by bacteria in soil: nutrient levels. Appl. Environ. Microbiol. 39:354-360.
Scheller, F.W., U. Wollenberger, C. Lei, W. Jin, B.Ge, C. Lehmann, F. Lisdat, and V. Fridman. 2002. Bioelectrocatalysis by redox enzymes at modified electrodes. Rev. Mol. Biotechnol. 82:411-424.
Schroder, U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9: 2619-2629.
Shan, D., S. Cosnier, and C. Mousty. 2003a. HRP wiring by redox active layered double hydroxides: application to the mediated H2O2 detection. Anal. Lett. 36:909-922.
Shan, D., C. Mousty, S. Cosnier, and S. Mu. 2003b. A new polyphenol oxidase biosensor mediated by Azure B in laponite clay matrix. Electroanalysis 15:1506-1512.
Stotzky, G. 1974. Activity, ecology, and population dynamics of microorganisms in soil. In: A.I. Laskin and H. Lechevalier (Eds.), Microbial ecology, Chemical Rubber Co., Cleveland, 57-135 pp.
Stotzky, G. 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: P. M. Huang and M. Schniter (Eds.), Interactions of Soil Minerals with Naturral Organics and Microbes, Madison: Soil Sci. Soc. Amwe., Inc, 305-428 pp.
Taleat, Z., A. Khoshroo, and M. Mazloum-Ardakani. Screen-printed electrodes for biosensing: A review (2008–2013). 2014. Microchim. Acta. 181:865-891.
Tan, K.H. 2011. principles of Soil Chemistry. 4th ed. New York: CRC Press pp.133-241.
Taurino, I., S. Carrara, M. Giorcelli, A. Tagliaferro, and G. De Micheli. 2012. Comparison of two different carbon nanotube-based surfaces with respect to potassium ferricyanide electrochemistry. Surface Sci. 606:156-160.
Theng, B.K.G. 1971. Mechanisms of foemation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390.
Vahabi, A., A.A. Ramezanianpour, H. Sharafi, H.S. Zahiril, H. Vali, and K.A. Noghabi. 2015. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J. Basic Microbiol. 55:105-111.
Vianello, F., S. Ragusa, M.T. Cambria, and A. Rigo. 2006. A high sensitivity amperometric biosensor using laccase as biorecognition element. Biosens. Bioelectron. 21:2155-2160.
Vilkhu, K., R. Mawson, L. Simons, and D. Bates. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innovative food Sci. Emerg. Technol. 50:576-581.
Walcarius, A. 2015. Mesoporous materials-based electrochemical sensors. Electroanalysis 27:1303-1340.
Wu, T., A.G. Xie, S.Z. Tan, and X. Cai. 2011. Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf. B Biointerfaces 86:232-236.
Wu, T.Y., N. Guo, C.Y. The, and J.X. Wen Hay. 2012. Advances in ultrasound technology for environmental remediations. Springer Science & Business Media, eBook, p. 120.
Yang, H.Y., M.P. Tong, and H. Kim. 2012. Influence of bentonite particles on representative gram negative and gram positive bacterial deposition in porous media. Environ. Sci. Tenchnol. 46 :11627-11634.
Yonekita, T., R. Ohtsuki, E. Hojo, N. Morishita, T. Matsumoto, T. Aizawa, and F. Morimatsu. 2013. Development of a novel multiplex lateral flow assay using an antimicrobial peptide for the detection of Shiga toxin-producing Escherichia coli. J. Microbiol. meth. 93:251-256.
Zen, J.M., and A.S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76:205A-211A.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top