王文毅、陳鴻基、曾志明。2013a。烷銨插層黏粒修飾電極對標準添加二價汞之偵測。台灣農學會報 14:33-51。
王文毅、朱家瑩、陳鴻基、曾志明。2013b。以多鐵蒙特石鍍金修飾電極對土壤二價汞之偵測研究。台灣農學會報 14:184-206。
朱家瑩、陳鴻基、曾志明。2013。以黏粒修飾電極探討對硝基苯酚的電化學反應。台灣農學會報14:607-630。
朱家瑩、陳鴻基、曾志明。2014。黏土礦物層面電荷在苯二酚電化學行為之影響。台灣農學會報15:276-296。
吳璧羽。2015。坡縷石與微生物的混合施用在蔬菜生長上的影響。國立國立中興大學土壤環境科學系研究所碩士論文。李國鏞、游若荻。1988。微生物學。臺北:華香園出版社。
林季融、陳鴻基、曾志明。2009。黏粒溶磷菌修飾電極的電化學分析研究。台灣農學會報 10:286-306。
林季融、陳鴻基、曾志明。2011。黏土礦物對土壤細菌生長影響之研究。台灣農學會報 12:164-185。
姚開元、陳鴻基、曾志明。2010。多鐵蒙特石修飾鍍銅電極之電化學反應研究。台灣農學會報11:524-542。
翁千翔。2009。光還原奈米金於二氧化鈦之電化學研究。國立國立中興大學化學系研究所碩士論文。陳鴻基、李國欽、莊作權。1995。利用黏粒修飾電極探討巴拉刈在黏土礦物膜層中的移動性。中華民國雜草學會會刊 16:1-13。陳鴻基、曾志明。2003a。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報 52:1-19。陳鴻基、曾志明。2003b。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報 4:429-446。曾綉丹、陳鴻基、曾志明。2012a。以黏粒修飾電極法探討對苯二酚的電化學反應。台灣農學會報 13:84-106。
曾綉丹、陳鴻基、曾志明。2012b。巴拉刈在黏粒修飾電極對鄰苯二酚電化學分析上的影響。台灣農學會報 13:595-616。
榮興民、黃巧雲、陳雯莉、梁巍。2008。土壤礦物與微生物相互作用的機理及其環境效應。生態學報 28:376-387。
劉俊良。2009。可攜式酵母菌微生物燃料電池系統與發電特性研究。國立國立中興大學精密工程研究所碩士論文。
鄭世堃、陳鴻基、曾志明。2007。以電化學方法探討烷基銨插層膨潤石類之表面電荷特性。中華農學會報 8:336-354。Ams, D.A., J.B. Fein, H. Dong, and P.A. Maurice. 2004. Experimental Measurements of the Adsorption of Bacillus subtilis and Pseudomonas mendocina Onto Fe-Oxyhydroxide-Coated and Uncoated Quartz Grains. Geomicrobiol. J. 21:511-519.
An, N., C.H. Zhou, X.Y. Zhuang, D.S. Tong, and W.H. Yu. 2015. Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. clay. Sci. 114:283-296.
Arbianti, R., H. Hermansyah, T.S. Utami, N.C. Zahara, I. Trisnawati, and E. Kristin. 2012. The usage of Saccharomyces cerevisiae in microbial fuel cell system for electricity energy production. J. Chem. Chem. Eng., 6:814-819.
Bard, A.J., and L.R. Faulkner. 2001. Electrochemical Methods. 2nd ed. New York: John Wiley & Sons. pp. 226-260.
Bazureau, J.P., and M. Draye. 2011. Ultrasound and Microwaves: Recent Advances in Organic Chemistry. Transworld Research Network, Kerala. p. 241.
Bennis, S., F. Chami, N. Chami, T. Bouchikhi, and A. Remmal. 2004. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol. 38:454–458.
Brevik, E.C., and T.J. Sauer. 2015. The Past, present, and future of soils and human health studies. Soil 1:35-46.
Cai, X., J.L. Zhang, Y. Ouyang, D. Ma, S.Z. Tan, and Y.L. Peng. 2013. Bacteria-adsorbed palygorskite stabilizes the quaternary phosphonium salt with specific-targeting capability, long-term antibacterial activity, and lower cytotoxicity. Langmuir 29:5279-5285.
Campo Dall''Orto, V., J.M. Vago, R.R. Carballo, and I.N. Rezzano. 2005. Comparison of tyrosinase biosensor and colorimetric method for polyphenol analysis in different kinds of Teas. Anal. Lett. 38:19-33.
Carmona-Martínez, A.A., F. Harnisch, U. Kuhlicke, T.R. Neu, and U. Schröder. 2013. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry. 93:23-29.
Carrado, K.A. 2004. Active sites on clay minerals, In: Handbook of Layered Materials, Eds: S. M. Auerbach, K. A. Carrado, P. K. Dutta and K. A. Carrado, CRC Press, 158–166.
Chatel, G., and D.R. MacFarlane. 2014. Ionic liquids and ultrasound in combination: synergies and challenges. Chem. Soc. Rev. 43:8132-8149.
Chemat, F., Zill-e-Huma, and M.K. Khan. 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason. Sonochem. 18:813-835.
Chenu, C., and G. Stotzky. 2002. Interactions between microorganisms and soil particles: an overview. In: P.M. Huang, J.M. Bollag, and N. Senesi (Eds.), Interactions between soil particles and microorganisms, New York: John Wiley & Sons, Inc, 3-40 pp.
Cobley, A.J., T.J. Mason, and V. Saez. 2011. Review of effect of ultrasound on electroless plating processes. Trans. IMF. 89:303-309.
Colmenares, J.C. 2013. Ultrasound and photochemical procedures for nanocatalysts preparation: application in photocatalytic biomass valorization. J. Nanosci. Nanotechnol. 13:4787-4798.
Compton, R.G., J.C. Eklund, F. Marken, T.O. Rebbitt, R.P. Akkermans, and D.N. Waller. 1997a. Dual activation: coupling ultrasound to electrochemistry — an overview. Electrochim. Acta. 42:2919-2927.
Compton, R.G., J.C. Eklund, and F. Marken. 1997b. Sonoelectrochemical processes: a review. Electroanal. 9:509-522.
Cosnier, S., C. Innocent, L. Allien, S. Poitry, and M. Tsacopoulos. 1997. An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate. Anal. Chem. 69:968-971.
Cosnier, S., F. Lambert, and M. Stoytcheva. 2000. A composite clay glucose biosensor based on an electrically connected HRP. Electroanalysis 12:356-360.
Courvoisier, E., and S. Dukan. 2009. Improvement of Escherichia coli growth by kaolinite. Appl. Clay Sci. 44:67-70.
Cravotto G., and P. Cintas. 2007. Forcing and controlling chemical reactions with ultrasound. Angew. Chem. Int. Ed. 46: 5476-5478.
Cravotto, G., and P. Cintas. 2012. Harnessing mechanochemical effects with ultrasound-induced reactions. Chem. Sci. 3:295-307.
Cravotto, G., E.C. Gaudino, and P. Cintas. 2013. On the mechanochemical activation by ultrasound. Chem. Soc. Rev. 42:7521-7534.
Dai, Q.w., Y.L. Zhao, F.Q. Dong, B. Wang, and Y.B. Huang. 2014. Interaction between bentonite and Bacillus litoralis strain SWU9. Appl. clay. Sci. 100:88-94.
Deguchi, S., M. Tsudome, Y. Shen, S. Konishi, K. Tsujii, S. Ito, and K. Horikoshi. 2007. Preparation and characterisation of nanofibrous cellulose plate as a new solid support for microbial culture. Soft Matter 3:1170-1175.
Dixon, J.B., and D.G. Schulze. 2002. Soil Mineralogy with Environmental Applications. Madison: Soil Sci. Soc. Amez., Inc. pp. 389-583.
Dong, H.L., D.P. Jaisi, J.W. Kim, and G.X. Zhang. 2009. Microbe-clay mineral interactions. American Mineralogist 94:1505-1519.
Eren, Z. 2012. Ultrasound as a basic and auxiliary process for dye remediation: a review. J. Environ. Manag. 104:127-141.
Esteve-Núñez, A., J.P. Busalmen, A. Berná, C. Gutiérrez-Garrán, and J.M. Feliu. 2011. Opportunities behind the unusual ability of Geobacter sulfurreducens for exocellular respiration and electricity production. Energy Environ. Sci. 4:2066-2069.
Farahnaky, A.; S.M.M. Dadfar, and M. Shahbazi. 2014. Physical and mechanical properties of gelatin–clay nanocomposite. J. Food Eng. 122:78-83.
Fomina, M. and G. M. Gadd. 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol. Res.106:107-117.
Galarneau, A., A. Barodawalla, and T.J. Pinnavaia. 1995. Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529-531.
Ghosh, P.K., and A.J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105:5691-5693.
Ghadiri, M., W. Chrzanowski, and R. Rohanizadeh. 2015. Biomedical Applications of Cationic Clay Minerals. RSC Adv. 5:29467-29481.
Gogate, P.R., P.A. Tatake, P.M. Kanthale, and A.B. Pandit. 2002. Mapping of sonochemical reactors: review, analysis, and experimental verification. 48:1542-1560.
Gomes, S.A.S.S., J.M.F. Nogueira, and M.J.F. Rebelo. 2004. An amperometric biosensor for polyphenolic compounds in red wine. Biosens. Bioelectron. 20:1211-1216.
Gómez-Mingot, M., J. Iniesta, V. Montiel, R.O. Kadara, and C.E. Banks. 2011. Screen printed graphite macroelectrodes for the direct electron transfer of cytochrome c. Analyst. 136:2146-2150.
Chatel, G., L. Novikova, and S. Petit. 2016. How efficiently combine sonochemistry and clay science? Appl. clay sci. 119:193-201.
Hassan, A.R.H.A.A., A. de la Escosura-Muñiz, and A. Merkoçi. 2015. Highly sensitive and rapid determination of Escherichia coli O157: H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens. Bioelectron. 67:511-515.
Heijnen, C.E., J. Postma, and J.A. van Veen. 1990. The significance of artificially formed and originally present protective microniches for the survival of introduced bacteria in soil. Problemy Pochvovedeniye 3:88-93.
Hemkemeyer M., G.J. Pronk, K. Heister, I. Kögel-Knabner, R. Martens, and C.C. Tebbe. 2014. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiol Ecol. 90:770-782.
Huang, P.M. 2008. Soil physical-chemical-biological interfacial interactions: An overview. In Huang, Q., P. M. Huang, and A. Violante (eds.) Soil Mineral--microbe-organic Interactions: Theories and Applications. Springer-Verlag, Berlin, Germany. pp.11-14.
Jinescu, C., V.A. Arus, O.C. Pârvulescu, and I.D. Nistor. 2014. Modelling of batch lactic acid fermentation in the presence of anionic clay. Food Technol. Biotechnol. 52:448-458.
Joo, P., A. Fitch, and S.H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31:2186-2192.
Kadara, R.O., N. Jenkinson, and C.E. Banks. 2009. Characterisation of commercially available electrochemical sensing platforms. Sensors Actuat. B. 138:556-562.
La Rochebrochard d''Auzay, S., J.F. Blais, and E. Naffrechoux. 2010. Comparison of characterization methods in high frequency sonochemical reactors of differing configurations. 17:547-554.
Lavie, S., and G. Stotzky. 1986. Adhesion of the clay minerals montmorillonite, kaolinite and attapulgite reduce of Histoplasma capsulatum. Appl. Environ. Microbiol. 51:65-73.
Lipson, S.M., and G. Stotzky. 1983. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area. Appl. Environ. Microbiol. 46:673-682.
Lojou, E., and P. Bianco. 2006. Layer-by-layer assemblies of montmorrilonite and bacterial cytochromes for bioelectrocatalytic devices. Electroanalysis 18:2426-2434.
Macha, S.M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta 128:1-18.
Maghear, A., M. Etienne, M. Tertiş, R. Săndulescu, and A. Walcarius. 2013. Clay-mesoporous silica composite films generated by electro-assisted self-assembly. Electrochim. Acta 112:333- 341.
Manisankar, P., G. Selvanathan, and C. Vedhi. 2006. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68:686-692.
Marshall, K.C. 1968. Interaction between colloidal montmorillonite and cells of Rhizobium species with different inogenic surfaces. Biochim. Biophys. Acta. 156 :179-186.
Marsili, E., D.B. Baron, I.D. Shikhare, D. Coursolle, J.A. Gralnick, and D.R. Bond. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. P. Natl. Acad. Sci. 105:3968-3973.
Mason, T.J. 1999. Sonochemistry. Oxford University Press. p. 92.
Mason, T.J. 2003. Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrason. Sonochem. 10:175-179.
Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27:159-177.
Mousty, C., S. Cosnier, M.S. Lopez, E. Lopez-cabarcos, and B. Lopez-Ruiz. 2007. Rutin determination at an amperometric biosensor. Electroanalysis 19:253-258.
Nasir Baig, R.B., and R.S. Varma. 2012. Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 41:1559-1584.
Navrátilová, Z., and P. Kula. 2003. Clay modified electrodes: present application and prospects. Electroanalysis. 15:837-846.
Nealson, K.H., and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311-343.
Ngameni, E., I.K. Tonlé, J.T. Apohkeng, R.G.. B. Bouwé, A.T. Jieumboué, and A. Walcarius. 2006. Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis 18:2243-2250.
Nikitenko, S.I., C. Le Naour, and P. Moisy. 2007. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. 14:330-336.
Novikova, L.A., F.L. Roessner, I. Belchinskaya, M. Alsawalha, and V.V. Krupskaya. 2014. Study of surface acid–base properties of natural clays and zeolites by the conversion of 2-methylbut-3-yn-2-ol. Appl. clay sci. 101:229-236.
Okamoto A., R. Nakamura, and K. Hashimoto. 2011. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes. Electrochim. Acta. 56:5526-5531.
Paiva, L.B., A.R. Morales, and F.R. Valenzuela Díaz. 2008. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 42:8-24.
Pentráková, L., K. Sui, M. Pentrák, and J.W. Stucki. 2013. A review of microbial redox interactions with structural Fe in clay minerals. Clay Miner. 48:543-560.
Petridis, D., P. Falaras, and T.J. Pinnavaia. 1992. Self-assembly of ion-paired electron-transfer centers in a clay-modified electrode. Inorg. Chem. 31:3530-3533.
Qian, D.I., C. Nakamura, S.O. Wenk, H. Ishikawa, N. Zorin, and J. Miyake. 2002. A hydrogen biosensor made of clay, poly (butylviologen) and hydrogenase sandwiched on a glass carbon electrode. Biosens. Bioelectron. 17:789-796.
Raghavulu, S.V., R.K. Goud, P.N. Sarma, and S.V. Mohan. 2011. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresour. Technol. 102:2751-2757.
Rahimnejad, M., G.D. Najafpour, A.A. Ghoreyshi, F. Talebnia, G.C. Premier, G. Bakeri, J.R. Kim, and S.E. Oh. 2012. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol., 50:575-580.
Rao, M.A., L. Gianfreda, F. Palmiero, and A. Violante. 1996. Soil Sci. Interactions of acid phosphatase with clays, organic molecules and organo-mineral complexes. 161:751-760.
Rawson, F.J., A.J. Downard, and K.H. Baronian. 2014. Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae. Scientific Reports 4:1-9.
Rosenzweig, W.D., and G. Stotzky. 1979. Influence of environmental factors on antagonism of fungi by bacteria in soil: clay minerals and pH. Appl. Environ. Microbiol. 38:1120.1126.
Rosenzweig, W.D., and G. Stotzky. 1980. Influence of environmental factors on antagonism of fungi by bacteria in soil: nutrient levels. Appl. Environ. Microbiol. 39:354-360.
Scheller, F.W., U. Wollenberger, C. Lei, W. Jin, B.Ge, C. Lehmann, F. Lisdat, and V. Fridman. 2002. Bioelectrocatalysis by redox enzymes at modified electrodes. Rev. Mol. Biotechnol. 82:411-424.
Schroder, U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9: 2619-2629.
Shan, D., S. Cosnier, and C. Mousty. 2003a. HRP wiring by redox active layered double hydroxides: application to the mediated H2O2 detection. Anal. Lett. 36:909-922.
Shan, D., C. Mousty, S. Cosnier, and S. Mu. 2003b. A new polyphenol oxidase biosensor mediated by Azure B in laponite clay matrix. Electroanalysis 15:1506-1512.
Stotzky, G. 1974. Activity, ecology, and population dynamics of microorganisms in soil. In: A.I. Laskin and H. Lechevalier (Eds.), Microbial ecology, Chemical Rubber Co., Cleveland, 57-135 pp.
Stotzky, G. 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: P. M. Huang and M. Schniter (Eds.), Interactions of Soil Minerals with Naturral Organics and Microbes, Madison: Soil Sci. Soc. Amwe., Inc, 305-428 pp.
Taleat, Z., A. Khoshroo, and M. Mazloum-Ardakani. Screen-printed electrodes for biosensing: A review (2008–2013). 2014. Microchim. Acta. 181:865-891.
Tan, K.H. 2011. principles of Soil Chemistry. 4th ed. New York: CRC Press pp.133-241.
Taurino, I., S. Carrara, M. Giorcelli, A. Tagliaferro, and G. De Micheli. 2012. Comparison of two different carbon nanotube-based surfaces with respect to potassium ferricyanide electrochemistry. Surface Sci. 606:156-160.
Theng, B.K.G. 1971. Mechanisms of foemation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390.
Vahabi, A., A.A. Ramezanianpour, H. Sharafi, H.S. Zahiril, H. Vali, and K.A. Noghabi. 2015. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J. Basic Microbiol. 55:105-111.
Vianello, F., S. Ragusa, M.T. Cambria, and A. Rigo. 2006. A high sensitivity amperometric biosensor using laccase as biorecognition element. Biosens. Bioelectron. 21:2155-2160.
Vilkhu, K., R. Mawson, L. Simons, and D. Bates. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innovative food Sci. Emerg. Technol. 50:576-581.
Walcarius, A. 2015. Mesoporous materials-based electrochemical sensors. Electroanalysis 27:1303-1340.
Wu, T., A.G. Xie, S.Z. Tan, and X. Cai. 2011. Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf. B Biointerfaces 86:232-236.
Wu, T.Y., N. Guo, C.Y. The, and J.X. Wen Hay. 2012. Advances in ultrasound technology for environmental remediations. Springer Science & Business Media, eBook, p. 120.
Yang, H.Y., M.P. Tong, and H. Kim. 2012. Influence of bentonite particles on representative gram negative and gram positive bacterial deposition in porous media. Environ. Sci. Tenchnol. 46 :11627-11634.
Yonekita, T., R. Ohtsuki, E. Hojo, N. Morishita, T. Matsumoto, T. Aizawa, and F. Morimatsu. 2013. Development of a novel multiplex lateral flow assay using an antimicrobial peptide for the detection of Shiga toxin-producing Escherichia coli. J. Microbiol. meth. 93:251-256.
Zen, J.M., and A.S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76:205A-211A.