|
[論文題目一] 陳玉如。2003。質譜技術與蛋白質體學。醫藥基因數技術教學資源中心。
簡涵如。2013。氧化鐵-氧化石墨烯奈米團簇於降血糖藥物之檢測。國立國立中興大學分子生物研究所碩士論文。
張雅涵。2015。利用富勒烯發展快速分析多酚類化合物之質譜平台。國立國立中興大學分子生物研究所碩士論文。
Ayorinde FO, Garvin K, Saeed K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000, 14, 608-615.
Bissell DM, Wang B. Acute Hepatic Porphyria. J Clin Transl Hepatol. 2015, 3, 17-26.
Besur S, Schmeltzer P, Bonkovsky HL. Acute Porphyrias. J Emerg Med. 2015, 49, 305-312.
Benton CM, Couchman L, Marsden JT, Rees DC, Moniz C, Lim CK. Direct and simultaneous determination of 5-aminolaevulinic acid and porphobilinogen in urine by hydrophilic interaction liquid chromatography-electrospray ionisation/tandem mass spectrometry. Biomed Chromatogr. 2012, 26, 1033-1040.
Bracher PJ, Schuster DI. Electron transfer in functionalized fullerenes. Fullerenes: From Synthesis to Optoelectronic Properties. 2002, pp. 163-212, Springer Netherlands.
Chen WY, Chen YC. Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal Bioanal Chem. 2006, 386, 699-704.
Dai Y, Whittal RM, Li L. Confocal Fluorescence Microscopic Imaging for Investigating the Analyte Distribution in MALDI Matrices. Anal Chem. 1996, 68, 2494-500.
Dai Y, Whittal RM, Li L. Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal Chem. 1999, 71, 1087-1091. Ford RE, Magera MJ, Kloke KM, Chezick PA, Fauq A, McConnell JP. Quantitative measurement of porphobilinogen in urine by stable-isotope dilution liquid chromatography-tandem mass spectrometry. Clin Chem. 2001, 47, 16227-1632.
Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A. 2007, 104, 727-732.
Gordon N. The acute porphyrias. Brain Dev. 1999, 21, 373-377.
Garaguso I, Borlak J. Matrix layer sample preparation: an improved MALDI-MS peptide analysis method for proteomic studies. Proteomics. 2008, 8, 2583-2595.
Guo Z, Zhang Q, Zou H, Guo B, Ni J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal Chem. 2002, 74, 1637-1641.
Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007, 6, 183-191.
Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, Meyer UA, Spiegelman BM. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell. 2005, 122, 505-515.
Hu YH, Ruckenstein E. Endohedral chemistry of C60-based fullerene cages. J Am Chem Soc. 2005, 127, 11277-1182. Hummers WS, Offeman RE. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Juang YM, Chen CJ, Lai CC. Conductive carbon tape as a sample platform for microwave-based MALDI MS detection of proteins and phosphoproteins. Anal Bioanal Chem. 2011, 401, 1219-1229.
Juang YM, Chien HJ, Chen CJ, Lai CC. Graphene flakes enhance the detection of TiO2-enriched catechins by SALDI-MS after microwave-assisted enrichment. Talanta. 2016, 153, 347-352.
Kaynak I, Seyhan S, Kurtbay HM, Merdivan M. Thin-layer chromatographic mobility of aryl-substituted porphyrins and their metalloporphyrins. J Chromatogr Sci. 2010, 48, 513-516.
Karas M, Bachmann D, Hillenkamp, F. Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57, 2935-2939.
Karas, M, Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. Anal. Chem. 1988, 60, 2299-2301.
Kemptner J, Marchetti-Deschmann M, Mach R, Druzhinina IS, Kubicek CP, Allmaier G. Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009, 23, 877-884.
Kim J, Kang W. Use of graphite plate for homogeneous sample preparation in matrix/surface-assisted laser desorption and ionization of polypropyleneglycol and polystyrene. Bull. Korean Chem. Soc. 2000, 21, 401-404.
Kinumi T, Saisu T, Takayama M, Niwa H. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J. Mass Spectrom. 2000, 35, 417-422.
Kroto HW, Allaf AW, Balm SP. C60: Buckminsterfullerene. Chemical Reviews. 1991, 6, 1213-1235.
Liu Q, Huang W, Shindi AA, Li YQ. A novel rapid method for simultaneous determination of three diagnostically important porphyrins in erythrocytes using hyphenated synchronous fluorescence techniques. Talanta. 2012, 88, 663-668.
Luo J, Lamb JH, Lim CK. Analysis of urinary and faecal porphyrin excretion patterns in human porphyrias by fast atom bombardment mass spectrometry. J Pharm Biomed Anal. 1997, 15, 1289-1294.
Liu CW, Chien MW, Su CY, Chen HY, Li LJ, Lai CC. Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst. 2012, 137, 5809-5816.
Lee J, Kim YK, Min DH. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J Am Chem Soc. 2010, 132, 14714-14717.
Liao HY, Tsai FJ, Lai CC, Tseng MC, Hsu CY, Chen CJ. Rapid fabrication of functionalized plates for peptides, glycopeptides and protein purification and mass spectrometry analysis. Analyst. 2016, 141, 2183-2190.
Moore MR. Biochemistry of porphyria. Int J Biochem. 1993, 25 1353-1368.
Michalak L, Fisher KJ, Alderdice DS, Jardine DR, Willett GD. C60-assisted laser desorption-ionization mass spectrometry. Org. Mass Spectrom. 1994, 29, 512.
Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., Wiesner, U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005, 5, 113-117.
Puy H, Gouya L, Deybach JC. Porphyrias. Lancet. 2010, 375, 924-937.
Podvinec M, Handschin C, Looser R, Meyer UA. Identification of the xenosensors regulating human 5-aminolevulinate synthase. Proc Natl Acad Sci U S A. 2004, 101, 9127-9132.
Peterson DS. Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev. 2007, 26, 19-34.
Qiao J, Wang M, Yan H, Yang G. Dispersive solid-phase extraction based on magnetic dummy molecularly imprinted microspheres for selective screening of phthalates in plastic bottled beverages. J Agric Food Chem. 2014, 62, 2782-2789.
Rainer M, Qureshi MN, Bonn GK. Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds. Anal Bioanal Chem. 2011, 400, 2281-2288.
Ren SF, Guo YL. Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Commun Mass Spectrom. 2005, 19, 255-260.
Rajh T. Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosstalk. J.phys. Chem. B. 2002, 106, 10543-10552.
Schreiber WE, Jamani A, Pudek MR. Screening tests for porphobilinogen are insensitive. The problem and its solution. Am J Clin Pathol. 1989, 92, 644-649.
Sleno L, Volmer DA. Some fundamental and technical aspects of the quantitative analysis of pharmaceutical drugs by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005, 19, 1928-1936.
Sunner J, Dratz E, Chen YC. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335-4342.
Shrestha LK, Shrestha RG, Hill JP, Ariga K. Self-assembled fullerene nanostructures. J Oleo Sci. 2013, 62, 541-553.
Shi C, Meng J, Deng C. Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun (Camb). 2012, 48, 2418-2420.
Thomson JJ. ON THE APPEARANCE OF HELIUM AND NEON IN VACUUM TUBES. Science. 1913, 37, 360-364.
The New York Times. DR. F.W. ASTON DIES; BRITISH SCIENTIST; Winner of the Nobel Prize in Chemistry in 1922 Noted for His Work With Isotopes PREDICTED ATOMIC FUTURE In Tour of This Country 23 Years Ago, He Foresaw the Releasing of New Energy Developed Isotopes Science Headed Atom Committee Lectured in This Country. The New York Times. 1945, Section, Page 33, Column , words.
Trufelli H, Palma P, Famiglini G, Cappiello A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2011, 30, 491-509.
Tanaka K, Waki H, Ido YAS, Yoshida Y. Protein and Polymer Analysis up to m/z 100,000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
Tang LA, Wang J, Loh KP. Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J Am Chem Soc. 2010, 132, 10976-10977.
Vorm O, Roepstorff P, Mann M. Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Analytical Chemistry. 1994, 66, 3281-3287.
Waldenström J. Studien über porphyrie. Act. Med. Scand. Suppl. 1939, 82, 1.
Watson C.J., Schwartz S. Maywood. Bull Exp Biol Med. 1941, 47, 393.
Wolff F, Gulbis B, Cotton F. Spectrophotometric quantification of total urinary porphyrins as a screening test for porphyrias: threshold value revisited. Clin Biochem. 2013, 46, 1825-1829.
Wilkinson JM. Nanotechnology applications in medicine. Med Device Technol. 2003, 14, 29-31.
Xu S, Li Y, Zou H, Qiu J, Guo Z, Guo B. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2003, 75, 6191-6195.
Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, Wang C. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal Bioanal Chem. 2009, 395, 1125-1133.
Zhang J, Yasuda M, Desnick RJ, Balwani M, Bishop D, Yu C. A LC-MS/MS method for the specific, sensitive, and simultaneous quantification of 5-aminolevulinic acid and porphobilinogen. J Chromatogr B Analyt Technol Biomed Life Sci. 2011, 879, 2389-2396.
Zhang H, Cha S, Yeung ES. Colloidal graphite-assisted laser desorption/ionization MS and MS(n) of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal Chem. 2007, 79, 6575-6584.
[論文題目二] 莊昱? 2011 利用微波、奈米粒子與質譜術發展高效率之磷酸化蛋白與兒茶素分析平台。國立國立中興大學分子生物研究所博班論文
蔡創韋 2014建立低功率微波輔助酵素水解平台於蛋白 Glycinin 之活性胜肽 VVYP 釋放分析。國立國立中興大學分子生物研究所碩班論文
Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: WH Freeman. 2002.
Bhatt NP, Patel K, Borchardt RT. Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone. Pharm Res. 1990, 7, 593-599.
Brennan TV, Clarke S. Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues: effects of the solvent dielectric. Protein Sci. 1993, 2, 331-338.
Bults P, Bischoff R, Bakker H, Gietema JA, van de Merbel NC. LC-MS/MS-Based Monitoring of In Vivo Protein Biotransformation: Quantitative Determination of Trastuzumab and Its Deamidation Products in Human Plasma. Anal Chem. 2016, 88, 1871-1877.
Cournoyer JJ, Lin C, Bowman MJ, O''Connor PB. Quantitating the relative abundance of isoaspartyl residues in deamidated proteins by electron capture dissociation. J Am Soc Mass Spectrom. 2007, 18, 48-56.
Chelius D, Rehder DS, Bondarenko PV. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal Chem. 2005, 77, 6004-6011.
Dunkelberger EB, Buchanan LE, Marek P, Cao P, Raleigh DP, Zanni MT. Deamidation accelerates amyloid formation and alters amylin fiber structure. J Am Chem Soc. 2012, 134, 12658-12667.
D''Angelo S, Lembo S, Flora F, De Bonis ML, Balato A, Ayala F, Balato N, Galletti P, Zappia V. Abnormal isoaspartyl residues in erythrocyte membranes from psoriatic patients. Arch Dermatol Res. 2012, 304, 475-9.
D''Angelo S, Trojsi F, Salvatore A, Daniele L, Raimo M, Galletti P, Monsurrò MR. Accumulation of altered aspartyl residues in erythrocyte membrane proteins from patients with sporadic amyotrophic lateral sclerosis. Neurochem Int. 2013, 63, 626-34.
Dutta T, Banerjee S, Soren D, Lahiri S, Sengupta S, Rasquinha JA, Ghosh AK. Regulation of enzymatic activity by deamidation and their subsequent repair by protein L-isoaspartyl methyl transferase. Appl Biochem Biotechnol. 2012, 168, 2358-2375.
Dimitrijevic A, Qin Z, Aswad DW. Isoaspartyl formation in creatine kinase B is associated with loss of enzymatic activity; implications for the linkage of isoaspartate accumulation and neurological dysfunction in the PIMT knockout mouse. PLoS One. 2014, 9, 100622.
Doyle HA, Gee RJ, Mamula MJ. Altered immunogenicity of isoaspartate containing proteins. Autoimmunity. 2007, 40, 131-137.
Duan J, Sun L, Liang Z, Zhang J, Wang H, Zhang L, Zhang W, Zhang Y. Rapid protein digestion and identification using monolithic enzymatic microreactor coupled with nano-liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2006, 1106, 165-174
Fujii N, Matsumoto S, Hiroki K, Takemoto L. Inversion and isomerization of Asp-58 residue in human alphaA-crystallin from normal aged lenses and cataractous lenses. Biochim Biophys Acta. 2001, 1549, 179-187.
Galletti P, De Bonis ML, Sorrentino A, Raimo M, D''Angelo S, Scala I, Andria G, D''Aniello A, Ingrosso D, Zappia V. Accumulation of altered aspartyl residues in erythrocyte proteins from patients with Down''s syndrome. FEBS J. 2007, 274, 5263-5277.
Hanson, S. R. A.; Hasan, A.; Smith, D. L.; Smith, J. B. The Major in Vivo Modifications of the Human Water-Insoluble lens Crystallins are Disulfide Bonds, Deamidation, Methionine Oxidation, and Backbone Cleavage. Exp. Eye Res. 2000, 71, 195–207.
Haberger M, Bomans K, Diepold K, Hook M, Gassner J, Schlothauer T, Zwick A, Spick C, Kepert JF, Hienz B, Wiedmann M, Beck H, Metzger P, M?lh?j M, Knoblich C, Grauschopf U, Reusch D, Bulau P. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: Susceptibility vs. functionality of critical quality attributes. MAbs. 2014, 6, 327-339.
Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001, 752, 233-245.
Hua L, Low TY, Sze SK. Microwave-assisted specific chemical digestion for rapid protein identification. Proteomics. 2006, 6, 586-591.
Krokhin OV, Antonovici M, Ens W, Wilkins JA, Standing KG. Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: Consequences for MALDI and HPLC-MALDI analysis. Anal Chem. 2006, 78, 6645-6650.
Kori Y, Patel R, Neill A, Liu H. A conventional procedure to reduce Asn deamidation artifacts during trypsin peptide mapping. J Chromatogr B Analyt Technol Biomed Life Sci. 2016, 1009-1010, 107-113.
Lin HY, Chen WY, Chen YC. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Anal Bioanal Chem. 2009, 394, 2129-2136.
Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S, Jones PJ, Blier PR. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem. 1999, 274, 22321-22327.
McKerrow JH, Robinson AB. Deamidation of asparaginyl residues as a hazard in experimental protein and peptide procedures. Anal Biochem. 1971, 42, 565-568.
McLuckey SA, Wells JM. Mass analysis at the advent of the 21st century. Chem Rev. 2001, 101, 571-606.
Nilsson, M. R.; Driscoll, M.; Raleigh, D. P. Low Levels of Asparagine Deamidation Can Have a Dramatic Effect on Aggregation of Amyloidogenic Peptides: Implications for the Study of Amyloid Formation. Protein Sci. 2002, 11, 342–349.
Pike LJ, Sadler JE. Proteomics, genomics and the future of medical education. Mo Med. 2004, 101, 496-499.
Park ZY, Russell DH. Thermal denaturation: a useful technique in peptide mass mapping. Anal Chem. 2000, 72, 2667-2670.
Russell WK, Park ZY, Russell DH. Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal Chem. 2001, 73, 2682-2685.
Reddy PM, Huang YS, Chen CT, Chang PC, Ho YP. Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions. J Proteomics. 2013, 80, 160-170.
Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T. Isoaspartate formation and neurodegeneration in Alzheimer''s disease. Arch Biochem Biophys. 2000, 381, 225-234.
Shimizu T, Matsuoka Y, Shirasawa T. Biological significance of isoaspartate and its repair system. Biol Pharm Bull. 2005, 28, 1590-1596.
Stroop SD. A modified peptide mapping strategy for quantifying site-specific deamidation by electrospray time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2007, 21, 830-836.
Slysz GW, Schriemer DC. On-column digestion of proteins in aqueous-organic solvents. Rapid Commun Mass Spectrom. 2003, 17, 1044-1050.
Sydow JF, Lipsmeier F, Larraillet V, Hilger M, Mautz B, M?lh?j M, Kuentzer J, Klostermann S, Schoch J, Voelger HR, Regula JT, Cramer P, Papadimitriou A, Kettenberger H. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One. 2014, 9, e100736.
Sun W, Gao S, Wang L, Chen Y, Wu S, Wang X, Zheng D, Gao Y. Microwave-assisted protein preparation and enzymatic digestion in proteomics. Mol Cell Proteomics. 2006, 5, 769-776.
Takata T, Oxford JT, Brandon TR, Lampi KJ. Deamidation alters the structure and decreases the stability of human lens betaA3-crystallin. Biochemistry. 2007, 46, 8861-8871.
Tyler-Cross R, Schirch V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J Biol Chem. 1991, 266, 22549-22556.
Vesper HW, Mi L, Enada A, Myers GL. Assessment of microwave-assisted enzymatic digestion by measuring glycated hemoglobin A1c by mass spectrometry. Rapid Commun Mass Spectrom. 2005, 19, 2865-2870.
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995, 16, 1090-1094.
Wilffert D, Bischoff R, van de Merbel NC. Antibody-free workflows for protein quantification by LC-MS/MS. Bioanalysis. 2015, 7, 763-779.
Zhang W, Czupryn MJ. Analysis of isoaspartate in a recombinant monoclonal antibody and its charge isoforms. J Pharm Biomed Anal. 2003, 30, 1479-90.
Zhang YJ, Olah TV, Zeng J. The integration of ligand binding and LC-MS-based assays into bioanalytical strategies for protein analysis. Bioanalysis. 2014, 6, 1827-1841.
|