跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.173) 您好!臺灣時間:2023/10/02 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李心汝
研究生(外文):Hsin-Ju Li
論文名稱:藉由反應曲面法及類神經網路探討酯解酵素催化合成維他命A酯 (月桂酸視黃酯) 之最適化研究
論文名稱(外文):Optimization of Lipase-Catalyzed Synthesis of Vitamin A Ester (Retinyl Laurate) by Response Surface Methodology and Artificial Neural Network
指導教授:劉永銓
指導教授(外文):Yung-Chuan Liu
口試委員:易逸波
口試委員(外文):Yet-Pole I
口試日期:2015-12-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:月桂酸視黃酯酵素催化合成反應曲面法類神經網路Novozym®435
外文關鍵詞:retinyl laurateenzymatic synthesisresponse surface methodology (RSM)artificial neural network (ANN)Novozym®435
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用月桂酸和醋酸視黃酯以正己烷當作有機溶劑,進行 Novozym®435 酵素催化合成月桂酸視黃酯,並藉由反應曲面法 (response surface methodology, RSM) 及類神經網路 (artificial neural network, ANN) 探討最適化研究。以三階四變中心混成實驗設計法 (central composite design, CCD) 設計出 27 組實驗組數,其影響因子分別為:酵素用量 (10~50 mg)、溫度 (40~60℃)、時間 (2~6 小時) 和基質莫耳數比 (酸/醇) (1~5),其得到之最高相對轉化率為 82.64 ± 1.94%,而最低之相對轉化率為 14.52 ± 1.85%。RSM 分析結果之 R2 為 0.9887,變異數分析 (ANOVA) 以酵素用量和基質莫耳數比 (酸/醇) 影響較為顯著,將實驗之 27 組數值進行 ANN 系統分析,得到之最適分析模型為:訓練模式 LM、轉換函數 Tanh、循環次數 104、隱藏層神經元個數 6,均方根誤差 (root mean squared error, RMSE) 和 R2 分別為 0.22347 和 0.99994,而 RSM 和ANN 最適化條件組之相對轉化率分別為 84.7 ± 1.16% 和 88.31 ± 0.3%,酵素重覆利用次數則在第 5 次開始其結果有明顯下降趨勢。驗證組部分 ANN 和 RSM 之 RMSE 分別為 0.04 和 0.12,結果表示以 ANN 預測系統較 RSM 系統精準。

In this study, immobilized lipase from Candida antarctica (Novozym® 435) was used in enzymatic catalysis to generate retinyl laurate by esterification of retinyl acetate with lauric acid in n-hexane. This reaction was model and optimized by response surface methodology (RSM) and artificial neural network (ANN). A 3-level-4-factor central composite design (CCD) was employed in this study to design 27 experiments. The experimental variables included enzyme amounts (10~50 mg), temperature (40~60℃), time (2~6 hours) and substrate molar ratio (acid/alcohol=1~5). Within the 27 experiments, the highest and lowest relative conversion are 82.64 ± 1.94 and 14.52 ± 1.85%, respectively. The coefficient of determination (R2) calculated from the design data of RSM is 0.9887, and analysis of variance (ANOVA) showed that enzyme amounts and substrate molar ratio exhibited the stronger effect on the molar conversion than other variables. As ANN was employed to model the biosynthesis, the optimal architecture of ANN was founded as follows: learning algorithm (LM), transfer function (Tanh), iterations (104) and the nodes of hidden layer (6). The root mean squared error (RMSE) and R2 were 0.22347 and 0.99994, respectively, suggesting that ANN was better than RSM in data fitting. The relative conversion of RSM and ANN optimal verification test were 84.7 ± 1.16% and 88.31 ± 0.3%, and the relative conversion decreased obviously when reusing enzymes by the fifth times. The results of verification test suggested that the RMSE of RSM and ANN were 0.04 and 0.12, respectively. This result shows ANN is more appropriate as the system of data prediction in this study.

摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第1章 前言 1
第2章 文獻回顧 3
2.1維生素 A 3
2.1.1介紹 3
2.1.2視黃酯合成之相關研究及應用 5
2.2酵素 8
2.2.1酵素簡介 8
2.2.2脂解酵素 10
2.2.3 Novozym®435 12
2.3最適化方法 13
2.3.1最適化方法簡介 13
2.3.2反應曲面法 16
2.3.3類神經網路 18
第3章 材料與方法 24
3.1實驗材料 24
3.1.1藥品 24
3.1.2儀器設備 25
3.2合成方法 26
3.2.1實驗架構 26
3.2.2實驗方法 27
3.2.3合成方法 28
3.3分析方法 29
3.3.1分析條件 29
3.3.2產物之相對轉化率 (Relative Conversion) 計算方式 30
3.3.3統計分析 30
3.3.4類神經網路 (Artificial Neural Network) 31
第4章 結果與討論 32
4.1圖譜分析 32
4.2變數分析 34
4.2.1酵素用量 34
4.2.2超音波功率 36
4.2.3溫度 38
4.2.4時間 40
4.3反應曲面法 42
4.3.1實驗設計及月桂酸視黃酯相對化率實驗結果 42
4.3.2酵素催化合成月桂酸視黃酯之變異數分析 45
4.3.3酵素催化合成月桂酸視黃酯之曲面分析 47
4.4類神經網路 54
4.4.1訓練模式 (Learning Algorithm) 54
4.4.2 轉換函數 (Transfer Function) 和隱藏層神經元 (Node) 個數 56
4.4.3循環次數 (Iterations) 58
4.4.4倒傳遞類神經網路 60
4.5最佳組實驗驗證和酵素重複再利用 66
4.6反應曲面法和類神經網路比較 68
第5章 結論與未來工作 70
5.1結論 70
5.2未來工作 71
參考文獻 72


葉怡成. 1997. 應用類神經網路 儒林圖書有限公司.
張斐章, 黃浩倫. 2003. 類神經網路理論與實務. 台灣東華書局股份有限公司.
Abdulmajed K, Heard CM. 2004. Topical delivery of retinyl ascorbate co-drug. 1. Synthesis, penetration into and permeation across human skin. Int J Pharm 280:113-124.
Agatonovic-Kustrin S, Beresford R. 2000. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis 22:717-727.
Ahmad AS, Hassan MY, Abdullah MP, Rahman HA, Hussin F, Abdullah H, Saidur R. 2014. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renewable & Sustainable Energy Reviews 33:102-109.
Anbu P, Gopinath SCB, Cihan AC, Chaulagain BP. 2013. Microbial Enzymes and Their Applications in Industries and Medicine. Biomed Research International.
Barron AR. 1994. Approximation and Estimation Bounds for Artificial Neural Networks. Machine Learning 14:115-133.
Barua AB, Olson JA. 1987. Chemical synthesis and growth-promoting activity of all-trans-retinyl beta-D-glucuronide. Biochem J 244:231-234.
Bezbradica D, Mijin D, Siler-Marinkovic S, Knezevic Z. 2006. The Candida rugosa lipase catalyzed synthesis of amyl isobutyrate in organic solvent and solvent-free system: A kinetic study. Journal of Molecular Catalysis B-Enzymatic 38:11-16.
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965-977.
Bose BK. 1994. Expert-System, Fuzzy-Logic, and Neural-Network Applications in Power Electronics and Motion Control. Proceedings of the Ieee 82:1303-1323.
Cheison SC, Wang Z, Xu SY. 2007. Use of response surface methodology to optimise the hydrolysis of whey protein isolate in a tangential flow filter membrane reactor. Journal of Food Engineering 80:1134-1145.
Curtis D, North BV, Sham PC. 2001. Use of an artificial neural network to detect association between a disease and multiple marker genotypes. Annals of Human Genetics 65:95-107.
Dawadi PB, Lugtenburg J. 2010. Synthesis and use of stable isotope enriched retinals in the field of vitamin A. Molecules 15:1825-1872.
DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G. 2013. Industrial use of immobilized enzymes. Chemical Society Reviews 42:6437-6474.
Ebrahimpour A, Rahman RNZRA, Ch''ng DHE, Basri M, Salleh AB. 2008. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp strain ARM. Bmc Biotechnology 8.
Elkeib AA, Ma X. 1995. Application of Artificial Neural Networks in Voltage Stability Assessment. Ieee Transactions on Power Systems 10:1890-1896.
Fritzke B. 1994. Growing Cell Structures - a Self-Organizing Network for Unsupervised and Supervised Learning. Neural Networks 7:1441-1460.
Futterman S, Andrews JS. 1964. The Composition of Liver Vitamin a Ester and the Synthesis of Vitamin a Ester by Liver Microsomes. J Biol Chem 239:4077-4080.
Jansson PA. 1991. Neural Networks - an Overview. Analytical Chemistry 63:A357-A362.
Jegannathan KR, Nielsen PH. 2013. Environmental assessment of enzyme use in industrial production - a literature review. Journal of Cleaner Production 42:228-240.
Jesionowski T, Zdarta J, Krajewska B. 2014. Enzyme immobilization by adsorption: a review. Adsorption-Journal of the International Adsorption Society 20:801-821.
Kai Z, Jianqiang W, Yan-hua W, Hui L, Ping-fang H, Ping W. 2011. Synthesis of retinyl palmitate catalyzed by Candida sp.99-125 lipase immobilized on fiber-like SBA-15 mesoporous material. J Nanosci Nanotechnol 11:7593-7602.
Khani MH. 2011. Statistical analysis and isotherm study of uranium biosorption by Padina sp algae biomass. Environmental Science and Pollution Research 18:790-799.
Kim H, Kim B, Kim H, Um S, Lee J, Ryoo H, Jung H. 2008. Synthesis and in vitro biological activity of retinyl retinoate, a novel hybrid retinoid derivative. Bioorg Med Chem 16:6387-6393.
Kim S, Kim Y, Kong Y, Kim H, Kang J. 2009. Synthesis and in vitro biological activity of retinyl polyhydroxybenzoates, novel hybrid retinoid derivatives. Bioorg Med Chem Lett 19:508-512.
Laghrouche M, Idjeri B, Hammouche K, Tahanout M, Boussey J, Ameur S. 2012. Temperature compensation of micromachined silicon hot wire sensor using ANN technique. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 18:237-246.
Lerin LA, Feiten MC, Richetti A, Toniazzo G, Treichel H, Mazutti MA, Oliveira JV, Oestreicher EG, de Oliveira D. 2011. Enzymatic synthesis of ascorbyl palmitate in ultrasound-assisted system: Process optimization and kinetic evaluation. Ultrasonics Sonochemistry 18:988-996.
Lerin LA, Loss RA, Remonatto D, Zenevicz MC, Balen M, Netto VO, Ninow JL, Trentin CM, Oliveira JV, de Oliveira D. 2014. A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng 37:2381-2394.
Li Y, Cui FJ, Liu ZQ, Xu YY, Zhao H. 2007. Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enzyme and Microbial Technology 40:1381-1388.
Liu ZQ, Zhou LM, Liu P, Baker PJ, Liu SS, Xue YP, Xu M, Zheng YG. 2015. Efficient two-step chemo-enzymatic synthesis of all-trans-retinyl palmitate with high substrate concentration and product yield. Appl Microbiol Biotechnol 99:8891-8902.
Magnier L, Haghighat F. 2010. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and Environment 45:739-746.
Maugard T, Rejasse B, Legoy MD. 2002. Synthesis of water-soluble retinol derivatives by enzymatic method. Biotechnol Prog 18:424-428.
Maugard T, Tudella J, Legoy MD. 2000. Study of vitamin ester synthesis by lipase-catalyzed transesterification in organic media. Biotechnol Prog 16:358-362.
McDonald AG, Tipton KF. 2014. Fifty-five years of enzyme classification: advances and difficulties. FEBS J 281:583-592.
Mee RW, Xiao JH. 2008. Steepest Ascent for Multiple-Response Applications. Technometrics 50:371-382.
Moghaddam MG, Ahmad FB, Basri M, Rahman MBA. 2010. Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester. Electronic Journal of Biotechnology 13.
Mohanty S, Jha MK, Raul SK, Panda RK, Sudheer KP. 2015. Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites. Water Resources Management 29:5521-5532.
Nagy HM, Watanabe K, Hirano M. 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering-Asce 128:588-595.
Nguyen NK, Borkowski JJ. 2008. New 3-level response surface designs constructed from incomplete block designs. Journal of Statistical Planning and Inference 138:294-305.
O''Byrne SM, Blaner WS. 2013. Retinol and retinyl esters: biochemistry and physiology. Journal of Lipid Research 54:1731-1743.
Riaz M, Asif M, Ali R. 2009. Stability of Vitamins during Extrusion. Critical Reviews in Food Science and Nutrition 49:361-368.
Sakakibara M, Wang D, Takahashi R, Takahashi K, Mori S. 1996. Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by invertase. Enzyme and Microbial Technology 18:444-448.
Sorg O, Antille C, Kaya G, Saurat JJ. 2006. Retinoids in cosmeceuticals. Dermatologic Therapy 19:289-296.
Takayama K, Fujikawa M, Nagai T. 1999. Artificial neural network as a novel method to optimize pharmaceutical formulations. Pharmaceutical Research 16:1-6.
Tetko IV, Livingstone DJ, Luik AI. 1995. Neural-Network Studies .1. Comparison of Overfitting and Overtraining. Journal of Chemical Information and Computer Sciences 35:826-833.
Velicer CM, Ulrich CM. 2008. Vitamin and mineral supplement use among US adults after cancer diagnosis: A systematic review. Journal of Clinical Oncology 26:665-673.
Wu C, Whitson G, Mclarty J, Ermongkoncha A, Chang TC. 1992. Protein Classification Artificial Neural System. Protein Science 1:667-677.
Yamamura S. 2003. Clinical application of artificial neural network (ANN) modeling to predict pharmacokinetic parameters of severely ill patients. Advanced Drug Delivery Reviews 55:1233-1251.
Yi SL, Su Y, Qi BK, Su ZG, Wan YH. 2010. Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes. Separation and Purification Technology 71:252-262.
Yin CH, Liu T, Tan TW. 2006. Synthesis of vitamin A esters by immobilized Candida sp lipase in organic media. Chinese Journal of Chemical Engineering 14:81-86.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊