跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅華
研究生(外文):Ya-Hua Chang
論文名稱:二氧化鈦一維結構之光催化應用及分析
論文名稱(外文):TiO2 One-Dimensional Nanostructures Photocatalytic Application and Analysis
指導教授:鄭紀民
口試委員:陳炎輝王飛龍
口試日期:2016-06-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:112
中文關鍵詞:光觸媒水熱法二氧化鈦可見光溴化銀
外文關鍵詞:Photocatalysthydrothermal methodTiO2 nanobeltsvisible lightAgBr
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的,是以合成出具有可見光光催化效應的二氧化鈦一維結構為主要目的,內容分為兩部分;第一個部分為利用水熱法處理商用鈦片在KOH溶液下,再進行HCl酸處理,接下來就是鍛燒過程。而NaOH 或KOH常被作為前驅溶液在水熱過程中,但是KOH 和NaOH如何影響最終的二氧化鈦微結構形態亦少探討,因此,我們著眼於探討不同的KOH / NaOH混合莫耳數比,於其晶相轉變,晶體成長速度等影響,其混合比例為1:0、0:1、1:1、2:1、1:2、1:3;而其他的控制參數包括水熱時間12hr、18hr、24hr、30hr;水熱溫度130℃、150℃、170℃、190℃;鍛燒溫度350℃、450℃、550℃,並以場發射掃描式電子顯微鏡(FE –SEM)、穿透式電子顯微鏡(TEM)、廣角X-ray繞射儀(XRD)做形貌及特性分析。然後,再進行光催化活性的應用-降解甲基橙,得到二氧化鈦一維結構最佳的合成條件為鈦片在150℃ NaOH/KOH莫耳混合比例1:2的鹼性條件下進行水熱反應,此觸媒在5小時紫外光照射下,能使甲基橙降解83.1%。
在第二部份,利用沉澱法,添加了溴化銀在第一部分得到的二氧化鈦一維結構上,將二氧化鈦一維結構交替浸置在0.1M的硝酸銀及0.1M的溴化鉀,藉由重複步驟6,9,12和15次,來獲得AgBr/ TiO_2。結果證明AgBr的添加可以使光觸媒具有可見光的應答效果。


The main purpose of this study is to synthsize a visible light responsive TiO2 one-dimensional nanostructures, and the procedures have been classified into two parts. In the first part, TiO2 one-dimensional nanostructures will be prepared from the commercial Ti foil in KOH solution by hydrothermal method and followed by HCl washing and post-annealing process. NaOH and KOH is commonly added into the precursor solution during the hydrothermal process. However, there is very few discussions on the effect of KOH and NaOH concentrations on the final morphologies of TiO2 nanostructures. Therefore, it is interested in mixing KOH and NaOH by different mole ratios to determine the effects on the morphology, growth speed and so on. The KOH and NaOH ratio are controlled in 1:0, 0:1 , 1:1, 2:1, 1:2 and 1:3. The additional control parameters include hydrothermal time of 12 hrs、18 hrs、24 hrs and 30 hrs,hydrothermal temperature of 130℃、150℃、170℃ and 190℃, post-annealing temperature of 350oC 450oC and 550oC. TiO2 one-dimensional structure will be characterized by FE-SEM, TEM, and XRD techniques. And then, the final TiO2 one-dimensional nanostructures will be applied for photocatalystic measurements. The optimun synthesized parameters of catalyst in the process have been determined. TiO2 one-dimensional nanostructures can grown on the Ti foil at 150oC in the suitable molar ratio of KOH/NaOH 1:2 solution. The degradiation of methyl orange can reach 83.1% under ultraviolet light irradiation for 5 hrs.
In the second part, the silver halides such as AgBr (Silver Bromide) will be introduced onto the TiO2 one-dimensional nanostructures by the precipitation method. The TiO2 one-dimensional nanostructures were immersed in 0.1M AgNO3 and 0.1M KBr solution alternately. Such process was repeated for 6, 9, 12, and 15 times. The AgBr/ TiO2 reveals the good responsive photocatalysis ability to visible light.


摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章緒論 1
1-1前言 1
1-2研究動機 2
第二章文獻回顧 4
2-1 光觸媒基本原理 4
2-1-1 光觸媒材料 4
2-1-2 光催化反應及機制 5
2-2 二氧化鈦簡介 8
2-3 製備二氧化鈦一維結構的方法 11
2-3-1 水熱法 12
2-3-2 溶凝膠法 12
2-3-3 模板法 13
2-3-4 陽極氧化法 14
2-4 二氧化鈦光觸媒的改質 14
2-4-1 摻雜金屬元素 14
2-4-2 摻雜非金屬元素 16
2-4-3 半導體複合材料 17
2-4-4 鹵化銀修飾二氧化鈦的研究 18 
第三章實驗設備與方法 20
3-1 實驗藥品與儀器 20
3-2 觸媒之製備 21
3-2-1 二氧化鈦一維結構之製備 21
3-2-2 溴化銀修飾二氧化鈦一維結構的合成 23
3-3 實驗分析儀器簡介 24
3-3-1 場發射掃描式電子顯微鏡 24
3-3-2 穿透式電子顯微鏡 25
3-3-3 X-ray 粉末繞射儀 26
3-3-4 X光電子能譜分析儀 27
3-3-5 紫外漫反射分光光度儀 28
3-4 甲基橙光催化活性分析 29
3-5 光催化實驗步驟 30
第四章結果與討論 31
4-1 水熱時間 31
4-1-1 XRD分析 31
4-1-2 FE-SEM分析 32
4-1-3 TEM分析 29
4-1-4 甲基橙紫外光降解效率 30
4-2 水熱溫度 44
4-2-1 XRD分析 44
4-2-2 FE-SEM分析 45
4-2-3 TEM分析 52
4-2-4 甲基橙紫外光降解效率 53
4-3 不同鹼性莫耳混合比例 56
4-3-1 XRD分析 56
4-3-2 FE-SEM分析 57
4-3-3 TEM分析 69
4-3-4 甲基橙紫外光降解效率 70
4-4 鍛燒溫度 73
4-4-1 XRD分析 73
4-4-2 FE-SEM分析 75
4-4-3 TEM分析 81
4-4-4 甲基橙紫外光降解效率 82
4-5 以化學沉澱法進行溴化銀之添加 84
4-5-1 XRD分析 84
4-5-2 FE-SEM分析 85
4-5-3 EDS分析 92
4-5-4 TEM分析 94
4-5-5 XPS分析 95
4-5-6 UV-vis分析 96
4-5-7 甲基橙可見光降解效率 97
4-6 二氧化鈦一維結構循環性能分析 99
4-6-1 TiO2一維結構觸媒之循環利用性 99
4-6-2 經沉澱12次合成AgBr / TiO2一維結構觸媒之循環利用性 101
第五章結論 104
參考文獻 106
附錄 112



1.申永順,環保月刊.2(2002) 176
2.H.J.H.Fenton,Journalof the Chemical Society,Transactions.65(1894)899-910
3.M.Gra ̈tzel,Nature.414(2001)338-344
4.H.Chun,W.Yizhong,T.Hongxiao,Chemosphere.41(2000)1205-1209
5.南區奈米科技K-12 教育發展中心,“奈米科技─基礎、應用與實作”,高立圖書有限公司, 2005.
6.T.Luo, J.L Cui, S. Hu, Y.Y. Huang,C.Y Jing, Aresnic recoveryfrom copper smelting waste water using TiO2, Environ. Sci. Technol. 44 (2010)9094–9098.
7.U.I.Gaya,A.H.Abdullah,Journal of Photochemistry and Photobiology C:Photochemistry Reviews.9(2008)1-12.
8.Chen, X.; Mao, S. S., Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews 2007, 107, (7), 2891-2959.
9.Li, Y. L.; Ishigaki, T., Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. Journal of Crystal Growth 2002, 242, (3-4), 511-516.
10.Suresh, C.; Biju, V.; Mukundan, P.; Warrier, K. G. K., Anatase to rutile transformation in sol-gel titania by modification of precursor. Polyhedron 1998, 17, (18), 3131-3135.
11.U.Diebold,Surface Sciene Reports.48(2003)53-229
12.李舜仁.以黏土為載體製備奈米級二氧化鈦光觸媒粉末.國立東華大學, 2004.
13.Surface Science Reports 48(2003)53-229
14.Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M., CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society 2008, 130, (4), 1124-+.
15.Banerjee, S.; Mohapatra, S. K.; Das, P. P.; Misra, M., Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS. Chemistry of Materials 2008, 20, (21), 6784-6791
16.T. Kasuga; M. Hiramatsu; A. Hoson; T. Sekino; K. Niihara, Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 1999, 11, (15), 1307-1311.
17.Zhang, Q. H.; Gao, L., Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: Insights from rutile TiO2. Langmuir 2003, 19, (3), 967-971.
18.Yang, S. W.; Gao, L., Fabrication and characterization of nanostructurally flowerlike aggregates of TiO2 via a surfactant-free solution route: Effect of various reaction media. Chemistry Letters 2005, 34, (7), 1044-1045.
19.D.M.Antonelli,J.Y. Ying, Angewandte Chemie International Edition in English.34(1995)2014-2017
20.C.Anderson,A.J.Bard,The Journal of Physical Chemistry.99(1995)
21.Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of titanium oxide nanotube. Langmuir 1998, 14, (12), 3160-3163.
22.Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M., Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol–gel template process. Journal of Crystal Growth 2004, 264, (1-3), 246-252.
23.T.H.J.XiLiu,Andrei Kolmakov,Sung-Hyeon Baeck,Martin Moskovits,Galen D.Stucky,Eric W.McFarland Materials Research Society 20(2005)1093-1096
24.C.Ruan,M.Paulose,O.K.Varghese,G.K.Mor,C.A.Grimes,The Journal of Physical Chemistry B 109(2005)15754-15759
25.L. Sun, S. Zhang ,X. W. Sun, X. He, Journal of Electroanalytical Chemistry 637(2009)6-12
26.Liu, G.; Li, F.; Wang, D. W.; Tang, D. M.; Liu, C.; Ma, X. L.; Lu, G. Q.; Cheng,H. M., Electron field emission of a nitrogen-doped TiO2 nanotube array. Nanotechnology 2008, 19, (2).
27.Sharma, R.; Das, P. P.; Misra, M.; Mahajan, V.; Bock, J. P.; Trigwell, S.; Biris, A. S.; Mazumder, M. K., Enhancement of the photoelectrochemical conversion efficiency of nanotubular TiO2 photoanodes using nitrogen plasma assisted surface modification. Nanotechnology 2009, 20, (7).
28.Bamwenda, G. R., Tsubota, S., Nakamura, T. and Haruta, M."Photoassisted Hydrogen-Production from a Water-Ethanol Solution – a Comparison of Activities of Au-TiO2 and Pt-TiO2", Journal of Photochemistry and Photobiology a-Chemistry 89 (1995): 177-189.
29.Bamwenda, G. R., Tsubota, S., Kobayashi, T. and Haruta, M. "Photoinduced Hydrogen-Production from an Aqueous-Solution of Ethylene-Glycol over Ultrafine Gold Supported on TiO2", Journal of Photochemistry and Photobiology a-Chemistry 77 (1994): 59-67.
30.Arana, J., Rodriguez, C. F., Diaz, O. G., Melian, J. A. H. and Pena, J. P. "Role of Cu in the Cu-TiO2 photocatalytic degradation of dihydroxybenzenes", Catalysis Today 101 (2005): 261-266.
31.H.Yamashita;Y.Ichihashi;M.Takeuchi; S. Kishiguchi; M. Anpo, Characterization of metal ion-implanted titanium oxidephotocatalysts operating under visible light irradiation. Journal of Synchrotron Radiation 1999, 6, (3), 451-452.
32.E. Borgarello; J. Kiwi; M. Grätzel; E. Pelizzetti; M. Visca, Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. Journal of the American Chemical Society 1982, 104, (11), 2996-3002.
33.F. Ye; A. Ohmori, The photocatalytic activity and photo-absorption of plasma sprayed TiO2Fe3O4 binary oxidecoatings. Surface and Coatings Technology 2002, 160, (1), 62-67.
34.D. Dvoranová; V. Brezová; M. Mazúr; M. A. Malati, Investigations of metal-doped titanium dioxide photocatalysts. Applied CatalysisB: Environmental 2002, 37, (2), 91-105.
35.X. Z. Li; F. B. Li; C. L. Yang; W. K. Ge, Photocatalytic activity ofWOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2001, 141, (2-3),209-217.
36.A.-W.Xu,Y.Gao,H.-Q.Liu,Journal of catalysis.2007(2002)151-157
37.Y.Ding,Y .Wang,L.Zhang,H.Zhang,C.M.Li,Y.Lei,Nanoscale.3(2011)1149-1157.
38.D.Ramos,P.S.Bezerra,F.Quina,R.Dantas,G.Casagrande,S.Oliveira,M.S.Oliveira,L.S.Oliveira,V.Ferreira,A.Machulek,Jr.,Environmental Science and Pollution Research(2014)
39.P.Panagiotopoulou,D.I.Kondarides,X.E.Verykios,The Journal of Physical Chemistry C.115(2011)1220-1230.
40.N.Zang,S.Liu,X.Fu,Y.-J.Xu,The Journal of Physical Chemistry C.115(2011)9136-9145.
41.X.Liu,t.Lv,Y.Liu,L.Pan,Z.sun,Desalination and Water Treatment.51(2013)3889-3895
42.J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, A. Fernandez, “Characterization and photocatalyticactivity in aqueous medium of TiO2and Ag-TiO2 coatings on quartz”, Applied Catalysis B-environmental, 13 (1997) 219-228.
43.L.Zang,W/Macyk,C.Lange,W.F.Maier,C.Antonius,D.Meissner.H.Kisch, Chemistry-A European Journal.6(2000)379-384.
44.Karakitsou, K. E. and Verykios, X. E. "Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage", Journal of Physical Chemistry 97 (1993): 1184-1189.
45.R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,Y.Taga,Science.293(2001)269-271.
46.S.U.M.Khan,M.Al-Shahry,W.B.Ingler,Science.297(2002)2243-2245
47.N.S.Chaudhari,S.S.Warule,S.A.Dhanmane,M.V.Kulkarni,M.Valant,B.B.Kale,、Nanoscale.5(2013)9383-9390.
48.H. Park, W. Choi, M. R. Hoffmann, Journal of Materials Chemistry .18(2008) 2379-2385
49.J. Wang,Y .Lv,L. Zhang,B. Liu,R.Jiang, G.Han, R.Xu,X.Zhang, Ultrasonics sonochemistry.17(2010)642-648.
50.X.Yan,C. Zou,X. Gao, Journal of Materials Chemistry.22(2012)5629-5640.
51.I. Paramasivam, Y,-C.Nah,C. Das,N.K.Shrestha, P.Schmuki, Chemistry-A European Journal.16(2010)8993-8997.
52.H.Zhang,G.Wang,D.Chen,X.Lv,J.Li, Chemistry ofMaterials.20(2008)6543-6549.
53.D.Wang,T.Duan,Q.Luo,X.Li,L.Bao,Desalination 270(2011)174-180.
54.L.Kuai,B.Geng,X.Chen,Y.Zhao,Y.Luo,Langmuir.26(2010)18723-18727.
55.J. Yu, G. Dai, B. Huang , The Journal of Physical Chemistry C.113 (2009)16394-16401
56.X. Wang,T.-T.Lim,Water Research.47(2013)4148-4158.
57.J.H.Seo,W.I.Jeon,U.Dembereldorj,S.Y. Lee,S,-W.Joo,Journal of Hazardous materials.198(2011) 347-355
58.Y. Li, H Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao, S. -J.Kim,Langmuir.24 (2008) 8351-8357
59.C.Hu,X.Hu,L.Wang,J.Qu,A.Wang,Environmental Science&Technology.40 (2006)7903-7907.
60.Y.Xing,R.Li,Q.Li.J.Yang, Journal of Nanoparticle Research C7-1284. 14(2012)
61.Wenxin Wang, Liqiang Jing, Yichun Qu, Yunbo Luan, Honggang Fu, Yuchen Xiao, Facile fabrication of efficient AgBr–TiO2 nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism, Journal of Hazardous Materials 243 (2012) 169– 178
62.C. Hu, Y.Q. Lan, J.H. Qu, X.X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria, J. Phys. Chem. B 110 (2006) 4066–4072




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊