(3.226.72.118) 您好!臺灣時間:2021/05/12 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許伊婷
研究生(外文):I-Ting Hsu
論文名稱:以水熱法製備AgBr/C3N4/ZnO複合光觸媒對於光降解之研究
論文名稱(外文):Hydrothermal Preparation of AgBr/C3N4/ZnO Composite Photocatalysts in Photocatalytic Degradation
指導教授:鄭紀民
口試委員:陳炎輝王飛龍
口試日期:2016-06-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:65
中文關鍵詞:氧化鋅氮化碳溴化銀光觸媒水熱法
外文關鍵詞:ZnOC3N4AgBrphotocatalysishydrothermal method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以水熱合成經由水解和脫水反應的方法,製備具有強化光催化活性能力的AgBr/C3N4/ZnO複合光觸媒。
主要探討不同的C3N4、CTAB、AgBr濃度以及水熱溫度條件下,對甲基橙於太陽光降解驅動ZnO複合光觸媒的催化活性之影響進行研究。並進一步藉由X-ray粉末繞射 (XRD),場發射掃描電鏡 (FESEM),比表面積及孔隙度分析儀 (BET) 和紫外光-可見光吸收光譜等儀器分析,進而了解ZnO複合光觸媒的結構、特性分析以及光催化性能。
實驗結果顯示,添加3% C3N4,43% AgBr和0.03M CTAB含量的ZnO觸媒於160℃的水熱溫度和30分鐘的水熱時間下進行合成,此ZnO複合光催化劑在各方面的表現都是最好的,而C3N4/ZnO觸媒在紫外光下降解甲基橙的光催化實驗中可達到96%;以及AgBr/C3N4/ZnO觸媒在可見光下降解甲基橙的光催化實驗中可達到79%,由此可證明添加改質劑AgBr及C3N4於ZnO能增加可見光光催化活性。

The synthesis of AgBr/C3N4/ZnO composite photocatalysts by using a hydrothermal synthesis method via the procedures of hydrolysis and dehydration reaction, and study its enhanced photocatalytic ability.
The effects of C3N4, CTAB, AgBr concentrations and hydro-thermal temperature on the photocatalytic activity of ZnO composite photocatalysts towards sun-light driven degradation of methyl orange have been investigated. The structural, characteristic analysis and photo-catalytic properties of the ZnO composite photocatalyst were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) and UV–visible absorption spectroscopy.
The results show that the addition of 3% C3N4, 43% AgBr, 0.03M CTAB in ZnO, and the hydrothermal temperature of 160°C with a hydrothermal time for 30 mins in AgBr/C3N4/ZnO composite photocatalyst possesses the best photocatalytic performance. The C3N4/ZnO photocatalytic of methyl orange degradation efficiency reaches to 96% under UV light, and the AgBr/C3N4/ZnO photocatalyst reaches to 79% under visible light. Thus, this study has demonstrated that the modification of ZnO by AgBr and C3N4 can enhance the photocatalytic activity.

目錄
致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 文獻回顧 3
2-1 ZnO光觸媒 3
2-2 C3N4光觸媒 4
2-3 AgBr光觸媒 6
2-4 界面活性劑CTAB改質光觸媒 6
2-5 光催化反應 8
2-5-1 光觸媒 8
2-5-2 光觸媒的反應機制 9
2-5-3 AgBr/C3N4/ZnO複合光觸媒的反應機制 10
2-6 光觸媒製備方法 11
2-6-1 沉澱法 11
2-6-2 噴霧法 12
2-6-3 溶膠-凝膠法 13
2-6-4 水熱法 15
第三章 實驗設備與方法 17
3-1 實驗藥品與儀器 17
3-1-1 實驗藥品 17
3-1-2 實驗儀器 17
3-2 AgBr/C3N4/ZnO複合光觸媒的合成 18
3-3 光觸媒之活性測試 20
3-3-1 甲基橙 20
3-3-2 光催化實驗裝置與步驟 21
3-3-3 光催化反應的動力模式 22
3-4 實驗儀器簡介 24
3-4-1 X-ray粉末繞射儀 24
3-4-2 場發射掃描式電子顯微鏡 25
3-4-3 紫外光/可見光吸收光譜儀 26
3-4-4 比表面積及孔隙度分析儀 28
第四章 結果與討論 32
4-1 不同的水熱溫度條件對觸媒C3N4/ZnO之影響 32
4-2 不同的C3N4添加量對觸媒C3N4/ZnO之影響 38
4-3 不同的CTAB添加量對觸媒C3N4/ZnO之影響 44
4-4 不同的AgBr添加量對觸媒AgBr/C3N4/ZnO之影響 50
第五章 結論 58
參考文獻 60

表目錄
表2-1 不同觸媒製備方法之優缺點 16
表4-1 不同的水熱溫度製備C3N4/ZnO觸媒之比表面積與平均孔徑 34
表4-2 不同的水熱溫度製備C3N4/ZnO觸媒之降解甲基橙的反應速率常數與降解率 37
表4-3 不同的C3N4添加量製備ZnO觸媒之比表面積與平均孔徑 40
表4-4 不同的C3N4添加量製備ZnO觸媒之降解甲基橙的反應速率常數與降解率 43
表4-5 不同的CTAB添加量製備C3N4/ZnO觸媒之比表面積與平均孔徑 46
表4-6 不同的CTAB添加量製備C3N4/ZnO觸媒之降解甲基橙的反應速率常數與降解率 49
表4-7 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之比表面積與平均孔徑 53
表4-8 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之降解甲基橙的反應速率常數與降解率 56

圖目錄
圖2-1 ZnO之六方纖鋅礦結構 3
圖2-2 以熱聚合法合成C3N4 4
圖2-3 五種C3N4同素異形體之結構 5
圖2-4 C3N4的官能團 5
圖2-5 AgBr之八面體型結構 6
圖2-6 添加CTAB製備複合觸媒之示意圖 7
圖2-7 光觸媒的反應機制圖 9
圖2-8 AgBr/C3N4/ZnO複合光觸媒的光催化機制 10
圖3-1 水熱裝置示意圖 19
圖3-2 實驗條件之流程圖 19
圖3-3 甲基橙的分子結構與UV-vis吸收光譜 20
圖3-4 光催化系統簡易圖 21
圖3-5 光催化反應實驗流程圖 23
圖3-6 布拉格方程式之幾何關係 25
圖3-7 場發射掃描式電子顯微鏡簡易構造圖 26
圖3-8 光譜儀電子能量躍遷路徑 27
圖3-9 紫外光/可見光吸收光譜儀簡易構造圖 27
圖3-10 吸附等溫曲線的六種形態之示意圖 30
圖3-11 吸附等溫曲線的遲滯現象之四種類型 31
圖4-1 不同的水熱溫度製備C3N4/ZnO觸媒之XRD圖譜 32
圖4-2 不同的水熱溫度製備C3N4/ZnO觸媒之SEM圖 33
圖4-3 不同的水熱溫度製備C3N4/ZnO觸媒之氮氣吸附曲線圖 35
圖4-4 不同的水熱溫度製備C3N4/ZnO觸媒之降解甲基橙的轉化率變化圖 36
圖4-5 不同的水熱溫度製備C3N4/ZnO觸媒之降解甲基橙的擬一階動力學圖 37
圖4-6 不同的C3N4添加量製備ZnO觸媒之XRD圖譜 38
圖4-7 不同的C3N4添加量製備ZnO觸媒之SEM圖 39
圖4-8 不同的C3N4添加量製備ZnO觸媒之氮氣吸附曲線圖 41
圖4-9 不同的C3N4添加量製備ZnO觸媒之降解甲基橙的轉化率變化圖 42
圖4-10 不同的C3N4添加量製備ZnO觸媒之降解甲基橙的擬一階動力學圖 43
圖4-11 不同的CTAB添加量製備C3N4/ZnO觸媒之XRD圖譜 44
圖4-12 不同的CTAB添加量製備C3N4/ZnO觸媒之SEM圖 45
圖4-13 不同的CTAB添加量製備C3N4/ZnO觸媒之氮氣吸附曲線圖 47
圖4-14 不同的CTAB添加量製備C3N4/ZnO觸媒之降解甲基橙的轉化率變化圖 48
圖4-15 不同的CTAB添加量製備C3N4/ZnO觸媒之降解甲基橙的擬一階動力學圖 49
圖4-16 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之XRD圖譜 51
圖4-17 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之SEM圖 52
圖4-18 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之氮氣吸附曲線圖 54
圖4-19 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之降解甲基橙的轉化率變化圖 55
圖4-20 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之降解甲基橙的擬一階動力學圖 56
圖4-21 不同的AgBr添加量製備AgBr/C3N4/ZnO觸媒之UV-vis分析圖 57

[1] Zyoud, et al., Journal of Environmental Health Science & Engineering, 13 (2015) 43.
[2] Lopez-Romero S., Growth and characterization of ZnO cross-like struc-tures by hydrothermal method, 14 (2009) 977–982.
[3] Turchi CS., Ollis DF., Photocatalytic degradation of organic water cont-aminants: mechanisms involving hydroxyl radical attack, J Catal, 122 (1990) 178–192.
[4] Hilal HS., Al-Nour GY., Zyoud A., Helal MH., Saadeddin I., Pristine and supported ZnO-based catalysts for phenazopyridine degradation with direct solar light, Solid State Sci, 12 (2010) 578–86.
[5] Mclaren A., Valdes-solis T., Li G.Q. et al., Shape and size effects of ZnO nanocrystals on photocatalytic activity, Journal of the American Chemical Society, 131 (2009) 12540-12541.
[6] Khodja A.A., Sehili T., Pilichowski J.F., Boule P., Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, J. Photochem. Photobiol. A, 141 (2001) 231-239.
[7] Zhao B. H., Jiang L., Lu J.G., He H.P., Zhang S.B. et al., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition, Appl. Phys. Lett., 88 (2006) 173506.
[8] Culliver E. A. J. Am. Ceram. Soc., 74 (1991) 20.
[9] J. Chen, H. Deng, M. Wei, Mater. Sci. Eng.B, 163 (2009) 157-160.
[10] L.Z. Pei, H.S. Zhao, W. Tan, H.Y. Yu, Y.W. Chen, Q.F. Zhang, Mater. Charact., 60 (2009) 1063-1066.
[11] Morkoç H., et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98 (2005) 4.
[12] Claus Franz Klingshirn, Bruno K. Meyer, Andreas Waag, Axel Hoffmann, Johannes M. M., Geurts. Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer, 2011.
[13] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater., 14 (2004) 935.
[14] J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett, 11 (2002) 1287.
[15] H. A. Ma, X. P. Jia, L. X. Chen, et al., High-pressure pyrolysis study of C3NH6: a route to preparing bulk C3N4. Journal of Physics: Condensed Matter, 14 (2002) 11269-11273.
[16] Q. Guo, Y. Xie, X. Wang, et al., Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures, Chemical Physics Letters, 380 (2003) 84-87.
[17] C. Li, C.B. Cao, H.S. ZHU, Graphitic carbon nitride thin films deposited by electrodeposition, Materials Letters, 58 (2004) 1903-1906.
[18] Y. Li, J. Zhang, Q. Wang, et al., Nitrogen-rich carbon nitride hollow vessels: synthesis, characterization, and their properties, Journal of Physical Chemistry B, 114 (2010) 9429-9434.
[19] Z. Huang, F. Li, B. Chen, et al., Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion, Applied Catalysis B: Environmental, (2013) 136-137:269-277.
[20] F. Dong, Z. Wang, Y. Sun, et al., Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, Journal of Colloid and Interface Science, 401 (2013) 70-79.
[21] Bojdys M. J., M. Ller J. O., Antonietti M., et al., Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride, Chemistry - A European Journal, 14 (2008) 8177-8182.
[22] F. Wu, Y. Liu, G. Yu, et al., Visible-light-absorption in graphitic C3N4 bilayer: enhanced by interlayer coupling, Journal of Physical Chemistry Letters, 3 (2012) 3330-3334.
[23] Arne Thomas, Anna Fischer, Frederic Goettmann, et al., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, Journal of Materials Chemistry, 18 (2008) 4893-4908.
[24] Glaus, S. and Calzaferri, G., The band structures of the silver halides AgF, AgCl and AgBr: A comparative study, 2 (2003) 398-401.
[25] N. Kakuta, N. Goto, H. Ohkita, T. Mizushima, Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution, J. Phys. Chem. B, 103 (1999) 5917-5919.
[26] T.H. James, The theory of the photographic process, Macmillan, New York, 1977.
[27] P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M. Whangbo, Ag/AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed., 47 (2008) 7931-7933.
[28] M. A. Azagarsamy, A. Gomez-Escudero, V. Yesilyurt, R. W. Chen, Q. F. Zhang, Mater. Charact., 60 (2009) 1063-1066.
[29] X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Materials Chemistry and Physics, 78 (2003) 99-104.
[30] Majid Khan, Chengsha Wei, Mingming Chen, Jiaojiao Tao, Ningdong Huang, Zeming Qi, Liangbin Li, CTAB-mediated synthesis and character-izeation of ZnO/Ag core–shell nanocomposites, Journal of Alloys and Compounds, 612 (2014) 306-314.
[31] S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Photochem. Photobiol. B 104 (2011) 425.
[32] Sini Kuriakose, Vandana Choudhary, Biswarup Satpati, Satyabrata Mohapatra, Enhanced photocatalytic activity of Ag-ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method, Beilstein J. Nanotechnol, 5 (2014) 639-650.
[33] Desong Wang, Yandong Duan, Qingzhi Luo, Xueyan Li, Leilei Bao, Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method, 270 (2011) 174-180.
[34] F. Fievet, J. P. Lagier et al., Solid State Ionics, 32 (1989) 198.
[35] G. L. Messing, S.C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc., 76 (1993) 2707.
[36] Hilal HS., Nour G., Zyoud A., Photo-degradation of Methyl Orange with Direct Solar Light Using ZnO and Activated Carbon-supported ZnO, In: Water purification, New York: Nova Science Publishers, (2009) 227–246.
[37] Jukka Raty et al., UV-visible Reflection Spectroscopy of Liquids, Springer Verlag, 2004.
[38] Torgny Undin, Development and improvement of methods for characterization of HPLC stationary phases, Department of Physical and Analytical Chemistry, Licentiate Thesis, 2011.
[39] Matthias Thommes, Physical Adsorption Characterization of Nano-porous Materials, (2010) 1059-1069.
[40] H.E. Duanwei and Z. Fuxiang, et al., Synthesis of C3N4 crystals under high pressure and high temperature, 41 (1998) 406-410.
[41] Zhou G., Deng J., Preparation and photocatalytic performance of Ag/ZnO nano-composites, Mater Sci Semicond Process, 10 (2007) 90–96.
[42] Wang H., Xie C., Zhang W., Cai S., Yang Z., Gui Y., Comparison of dye degradation efficiency using ZnO powders with various size scales, J Hazard Mater, 141 (2007) 645–652.
[43] Yu D., Cai R., Liu Z., Studies on the photodegradation of rhodamine dyes on nanometer-sized zinc oxide, Spectrochim Acta A Mol Biomol Spectrosc, 60 (2004) 1617–1624.
[44] Daneshvar N., Aber S., Dorraji MS., Khataee A., Rasoulifard M., Pre-paration and investigation of photocatalytic properties of ZnO nanocrystals: effect of operational parameters and kinetic study, Evaluation, 900 (2008) 6.
[45] Carlos J. Duran-Valle, Techniques Employed in the Physicochemical Characterization of Activated Carbons, Universidad de Extremadura Spain, 3 (2012) 38-55.
[46] Noll, K. E., V. Gounaris, and W. S. Hou, Adsorption technology for air and water pollution control, Lewis Pubbishers, Inc., (1992) 32-34.
[47] Ertl, G., H. Knözinger, and J. Weitkamp, Handbook of Heterogeneous Catalysis, VCHD-69451 Weinheim, (1997) 1508.
[48] P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, M. Whangbo, Highly efficient visible-light plasmonic photocatalyst Ag/AgBr, Chem. Eur. J., 15 (2009) 1821-1824.
[49] B. Pare, S.B. Jonnalagadda, H. Tomar, P. Singh, V.W. Bhagwat, ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation, Desalination 232 (2008) 80-90.
[50] Xingtian Yin,Wenxiu Que, Duan Fei, Fengyu Shen, Qiushi Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties, Journal of Alloys and Compounds, 524 (2012) 13-21.
[51] Zou-ming Xu, Yu-xia Wang, Journal of Alloys and Compounds, 555 (2013) 268-273.
[52] Yong-Hong Nia, Xian-Wen Weia, Xiang Mab, Jian-Ming Hongb, CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals, Journal of Crystal Growth, 283 (2005) 48-56.
[53] N.S. Nirmala Jothi, R. Gunaseelan, P. Sagayaraj, Investigation on the synthesis, structural and optical properties of ZnO nanorods prepared under CTAB assisted hydrothermal conditions, 4 (2012) 1698-1704.
[54] Hui Wang, Xiaodong Zhang, Junfeng Xie, Jiajia Zhang, Piao Ma, Bicai Pan, Yi Xie, Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity, 2015.
[55] K. Kawahara, K. Suzuki, Y. Ohko, T. Tatsuma, Electron transport in silversemiconductor nanocomposite films exhibiting multicolor photo-chromism, Phys. Chem. 7 (2005) 3851-3855.
[56] M. R. De Guire, et al., J. Mater. Res., 8 (1993) 2327-2335.
[57] J. L. Shi et al., J. Mater. Sci., 30(1995)5508,
[58] 林麗娟, X光繞射原理及其應用, 工業材料雜誌86期, 1994.
[59] 林智仁, 場發射式掃描式電子顯微鏡, 工業材料雜誌181期, 2002.
[60] 黃富昌, 土壤結構及化性對有機污染物吸/脫特性之研究, 博士論文, 國立中央大學環境工程研究所, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔