(3.239.56.184) 您好!臺灣時間:2021/05/13 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:粘維銘
研究生(外文):Wei-Ming Nien
論文名稱:由非光氣法以聚二甲基矽氧烷二胺與碳酸二苯酯製作軟鍊異氰酸鹽及合成聚氨酯彈性體
論文名稱(外文):Synthesis of Soft-Chain Polyisocyanates Made from Diamino-Siloxanes and Diphenyl Carbonate by a Non-Phosgene Route and Apply to Elastomeric Polyurethane
指導教授:戴憲弘林慶炫
指導教授(外文):Sheng-Hong DaiChing-Hsuan Lin
口試委員:鄭如忠
口試委員(外文):Ru-Jong Jeng
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:92
中文關鍵詞:非光氣法聚二甲基矽氧烷異氰酸鹽
外文關鍵詞:Non-PhosgenePDMS-Isocyanate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是透過非光氣法使用聚二甲基矽氧烷二胺(PDMS-Diamine)與碳酸二苯酯(DPC)先反應形成帶有Biscarbamate官能基之中間體,接著以熱裂解方式一鍋化製程製備出不同當量之聚二甲基矽氧烷異氰酸鹽(PDMS-Isocyanate)。過程中除不須使用光氣,亦無溶劑或催化劑的使用,製得高產率之Biscarbamate與聚二甲基矽氧烷二異氰酸鹽(PDMS-diisocyanate),且反應過程中所產生的副產物酚回收率皆達90%以上,達到回收再利用,符合綠色化學製程的精神。
再將本研究裂解製得的異氰酸鹽做為後續合成PU彈性體的原料,先將其與做為鏈延伸劑的二丁醇(BDO)反應形成預聚物,接著再加入不同鏈段結構之異氰酸鹽(IPDI、TMXDI、H12MDI、MDI)以及不同的軟硬鍊段重量比例製備出本研究之PU彈性體延伸物。本研究藉由添加PDMS增加了PU產品的疏水性與熱穩定性,也藉著軟硬鏈段比例的調整以達到符合不同領域應用需求的物理以及機械性。除了MDI系列因為相容性太差外,整體來說都能製備高分子量之PU彈性體。
以當量800之聚二甲基矽氧烷二異氰酸鹽(PDMS-diisocyanante)在硬鏈段(BDO/IPDI)重量佔51%之比例下,於產品透明度、接觸角、機械性質整體性質中有較優異的表現,添加H12MDI製備而得之PU彈性體有較高的硬鏈段玻璃轉移溫度,最高達112℃。


In pursuit of green processes for synthesizing organic products and polymers, an efficient non-phosegeneroute (NPR) of polydimethylsiloxane-diisocyanates (PDMS-diisocyanate) formation has been devised by reaction of biscarbamates from polydimethylsiloxanediamine (PDMS-diamine) and diphenylcarbonate (DPC).The results showed that the high-yield of biscarbamates and PDMS-isocyanate products can be produced with solvent- and catalyst- free processes. The phenol by-product can be isolated with high recovery yield of > 90% for recycling use.
Then, the varieties of PDMS-PU elastomers were synthesizes from PDMS-diisocyanate as raw materials. The elastomeric polyurethanes prepared fromPDMS-diisocyanate and butandiol (BDO) were used as the soft-segment pre-polymer,and they were chain-extended with different diisocyanate, such as IPDI,TMXDI,and H12MDIin varied proportions.In general, high molecular weight polyurethane elastomers have been prepared in good yields for all siloxane-containing PUEs except for the case of MDI because of incompatibility.
Although more detailed accounst and optimized study of this PDMS-diisocyanate through NPR syntheses might be need. PU elastomer prepared fromPDMS-diisocyanate of 800 equivalent weight with BDO/IPDI in 50% as the hard segment was found to be highly desirablefor having a high contact angle,high transprancey, and asequate mechanical properties.Whereas,the PU elastomer prepared from H12MDIseries possess a highest heat resistant properties with highest Tgh of 112℃.


摘要 i
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
第二章 文獻回顧 2
2-1 聚氨酯簡介 2
2-2 聚二甲基矽氧烷(PDMS)簡介 3
2-3 光氣法製作異氰酸鹽 5
2-4非光氣法製作異氰酸鹽 6
2-5 非光氣法(NPR)製作PU高分子 11
2-6 PDMS導入合成PU高分子 14
2-7研究動機與目的 15
第三章 實驗內容 17
3-1藥品資料 17
3-2實驗儀器 22
3-3合成產品命名與簡稱 : 24
3-4實驗步驟 26
3-4-1 不同當量之PDMS-Diamine與DPC合成Biscarbamate 26
3-4-2 Biscarbamate之熱裂解製作Isocyanate 27
3-4-3 異氰酸鹽產物之NCO%測定 28
3-4-4 PDMS-Isocyanate與BDO、IPDI合成PU-I 30
3-4-5 PDMS-Isocyanate與BDO、TMXDI合成PU-T 34
3-4-6 PDMS-Isocyanate與BDO、H12MDI合成PU-H12 38
第四章 結果與討論 44
4-1 不同當量之PDMS-Biscarbamate合成 44
4-1-1由130A合成130C 44
4-1-2由430A合成430C 45
4-1-3由800A合成800C 47
4-1-4由425A合成425C 48
4-2-1 由130C之熱裂解製作130I 50
4-2-2 由430C之熱裂解製作430I 51
4-2-3 由800C之熱裂解製作800I 52
4-2-4 由425C之熱裂解製作425I 53
4-3 NCO%測定 54
4-4 PDMS-Isocyanate與BDO、IPDI合成PU-I 54
4-4-1不同硬鏈段含量之130PU-I性質測試比較 54
4-4-2不同硬鏈段含量之430PU-I性質測試比較 57
4-4-3不同硬鏈段含量之800PU-T性質測試比較 60
4-4-4不同硬鏈段含量之425PU-I性質測試比較 62
4-5 PDMS-Isocyanate與BDO、TMXDI合成PU-T 66
4-5-1 不同硬鏈段含量之130PU-T性質測試比較 66
4-5-2不同硬鏈段含量之430PU-T性質測試比較 69
4-5-3不同硬鏈段含量之800PU-T性質測試比較 71
4-5-4不同硬鏈段含量之425PU-T性質測試比較 74
4-6 PDMS-Isocyanate與BDO、H12MDI合成PU-H12 78
4-6-1不同硬鏈段含量之130PU-H12性質測試比較 78
4-6-2不同硬鏈段含量之430PU-H12性質測試比較 80
4-6-3不同硬鏈段含量之800PU-H12性質測試比較 82
4-6-4不同硬鏈段含量之130PU-H12性質測試比較 85
第五章 結論 89
第六章 參考文獻 91



1.G, O., Polyurethane handbook. Hanser. New York. 1983.
2.C, H., Polyurethane elastomers. Applied Science, New York. 1982.
3.Randall, D. and S. Lee, The polyurethanes book2002: Wiley.
4.Jost, K., G. Hammen, and R. Sundermann, Process for the preparation of isocyanates, 1999, Google Patents.
5.陳學永, 以非光氣法製備 4, 4''-二苯基甲烷二異氰酸鹽. 2012.
6.林維興, 使用脂肪族二胺與碳酸二苯酯在高效率的一鍋化合成法中製備脂肪族二異氰酸酯. 2015.
7.Anastas, P. and N. Eghbali, Green chemistry: principles and practice. Chemical Society Reviews, 2010. 39(1): p. 301-312.
8.Hutchins, S.M. and K.T. Chapman, A general method for the solid phase synthesis of ureas. Tetrahedron letters, 1994. 35(24): p. 4055-4058.
9.Eckert, H. and B. Forster, Triphosgene, a crystalline phosgene substitute. Angewandte Chemie International Edition in English, 1987. 26(9): p. 894-895.
10.S.Kim, KR Pat. 9600007802. 1992.
11.Bohmholdt, G., et al., Continuous multi-stage process for the preparation of (cyclo) aliphatic diisocyanates, 1994, Google Patents.
12.Fukuoka, S., et al., Method for manufacture of diphenylmethane diisocyanates, 1985, Google Patents.
13.Yamazaki, N., T. Iguchi, and F. Higashi, The reaction of diphenyl carbonate with amines and its application to polymer synthesis. Journal of Polymer Science Part A: Polymer Chemistry, 1979. 17(3): p. 835-841.
14.Harada, K., et al., Process for producing aryl carbamates, 2000, Google Patents.
15.林照興, 以綠色化學程序合成聚胺酯-脲素樹酯之中間體. 2009.
16.Shinohata, M. and N. Miyake, Process for producing isocyabates using dlaryl carbonate, 2011, US Patent 20,110,054,211.
17.Speckhard, T., et al., Properties of polyisobutylene polyurethane block copolymers: 3. Hard segments based on 4, 4′-dicyclohexylmethane diisocyanate (H12MDI) and butane diol. Polymer, 1985. 26(1): p. 70-78.
18.Phillips, R., et al., Structure-property relationships and moisture sensitivity of PDMS/PTMO mixed soft segment urethane elastomers. Journal of Macromolecular Science, Part B: Physics, 1988. 27(2-3): p. 245-274.
19.Liao, S., S. Jang, and M. Lin, Phase behavior and mechanical properties of siloxane-urethane copolymer. Journal of Polymer Research, 2005. 12(2): p. 103-112.
20.Speckhard, T.A. and S.L. Cooper, Ultimate tensile properties of segmented polyurethane elastomers: factors leading to reduced properties for polyurethanes based on nonpolar soft segments. Rubber chemistry and technology, 1986. 59(3): p. 405-431.
21.Smith, T.L., Strength of elastomers. A perspective. Rubber chemistry and technology, 1978. 51(2): p. 225-252.
22.Smith, T.L., Tensile strength of polyurethane and other elastomeric block copolymers. Journal of Polymer Science: Polymer Physics Edition, 1974. 12(9): p. 1825-1848.
23.Ward, R., Thermoplastic silicone-urethane copolymers: A new class of biomedical elastomers. Medical Device and Diagnostic Industry, 2000. 22(4): p. 68-77.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔