[1] D. R. Gabe, and A. J. Cobley, “Catalytic Anodes for Electrodeposition: A Study for Acid Copper Printed Circuit Board (PCB) Production,” Circuit World, vol. 32, no. 3, pp. 3-10, 2006.
[2] 王美齡, “尺寸安定性陽極於填孔電鍍之應用,” 國立國立中興大學化學工程系碩士論文, 中華民國100年.[3] 熊婉雲, “尺寸安定性陽極應用於矽穿孔填孔電鍍之研究,” 國立國立中興大學化學工程系碩士論文, 中華民國102年.[4] 胡啟章, “電化學原理與方法,” 五南出版, 中華民國96年.
[5] T. Fuchigami, M. Atobe, and S. Inagi, “Fundamentals and Applications of Organic Electrochemistry,” John Wiley & Sons Inc., 2015.
[6] S. B. Strbac, and R. R. Adzic, “Electrocatalysis, Fundamentals -Electron Transfer Process; Current-Potential Relationship; Volcano Plots,” Springer New York, 2014.
[7] W. Schmickler, and E. Santos, Interfacial electrochemistry: Springer Science & Business Media, 2010.
[8] A. J. Bard, and L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications,” John Wiley & Sons Inc., 2011.
[9] R. Liu, J. Duay, and S. B. Lee, “Heterogeneous nanostructured electrode materials for electrochemical energy storage,” Chem Commun (Camb), vol. 47, no. 5, pp. 1384-404, Feb 7, 2011.
[10] H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice-Hall Inc., 2001.
[11] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections,” IBM J. Res. & Dev., vol. 42, pp. 567, 1998.
[12] J. J. Kelly, C. Tian, and A. C. West, “Leveling and Microstructural Effects of Additives for Copper Electrodeposition,” Journal of the Electrochemical Society, vol. 146, no. 7, pp. 2540-2545, 1999.
[13] A. C. West, “Theory of Filling of High‐Aspect Ratio Trenches and Vias in Presence of Additives,” Journal of The Electrochemical Society, vol. 147, no. 1, pp. 227-232, 2000.
[14] P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition,” Journal of The Electrochemical Society, vol. 148, no. 7, pp. C492, 2001.
[15] T. P. Moffat, D. Wheeler, W. H. Huber, and D. Josell, “Superconformal electrodeposition of copper,” Electrochemical and Solid-State Letters, vol. 4, no. 4, pp. C26-C29, 2001.
[16] T. P. Moffat, D. Wheeler, S. K. Kim, and D. Josell, “Curvature Enhanced Adsorbate Coverage Model for Electrodeposition,” Journal of The Electro chemical Society, vol. 153, no. 2, pp. C127, 2006.
[17] R. Tenno, and A. Pohjoranta, “An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives,” Journal of The Electrochemical Society, vol. 155, no. 5, pp. D383, 2008.
[18] K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking,” Journal of The Electrochemical Society, vol. 152, no. 11, pp. H173, 2005.
[19] W. P. Dow, H. S. Huang, M. Y. Yen, and H. C. Huang, “Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating,” Journal of The Electrochemical Society, vol. 152, no. 6, pp. C425, 2005.
[20] W. P. Dow, and C. W. Liu, “Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method,” Journal of The Electrochemical Society, vol. 153, no. 3, pp. C190, 2006.
[21] M. Lefebvre, L. Barstad, and L. Gomez, “Copper Electroplating for HDI and IC Substrate Through Hole Filling,” Dow Chemical Materials, 2012.
[22] P. Dixit, and J. Miao, “Aspect-Ratio-Dependent Copper Electrodeposition Technique for Very High Aspect-Ratio Through-Hole Plating,” Journal of The Electrochemical Society, vol. 153, no. 6, pp. G552-G559, 2006.
[23] W. P. Dow, H. H. Chen, M. Y. Yen, W. H. Chen, K. H. Hsu, P. Y. Chuang, H. Ishizuka, N. Sakagawa, and R. Kimizuka, “Through-Hole Filling by Copper Electroplating,” Journal of The Electrochemical Society, vol. 155, no. 12, pp. D750-D757, 2008.
[24] G. Y. Lin, J. J. Yan, M. Y. Yen, W. P. Dow, and S. M. Huang, “Characterization of through-hole filling by copper electroplating using a tetrazolium salt inhibitor,” Journal of The Electrochemical Society, vol. 160, no. 12, pp. D3028-D3034, 2013.
[25] J. J. Yan, L. C. Chang, C. W. Lu, and W. P. Dow, “Effects of organic acids on through-hole filling by copper electroplating,” Electrochimica Acta, vol. 109, pp. 1-12, 2013.
[26] W. P. Dow, C. W. Lu, J. Y. Lin, and F. C. Hsu, “Highly Selective Cu Electrodeposition for Filling Through Silicon Holes,” Electrochemical and Solid-State Letters, vol. 14, no. 6, pp. D63-D67, 2011.
[27] C. H. Chen, C. W. Lu, S. M. Huang, and W. P. Dow, “Effects of Supporting Electrolytes on Copper Electroplating for Filling Through-Hole,” Electro chimica Acta, vol. 56, no. 17, pp. 5954-5960, 2011.
[28] Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction,” J. Electrochem. Soc., vol. 142, pp. L87, 1995.
[29] W. P. Dow, and H. S. Huang, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition,” Journal of The Electrochemical Society, vol. 152, no. 2, pp. C67, 2005.
[30] D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, “Copper Ion Reduction Catalyzed by Chloride Ions,” J. Electroanal. Chem., vol. 532, pp. 353, 2002.
[31] W. P. Dow, M. Y. Yen, C. W. Liu, and C. C. Huang, “Enhancement of Filling Performance of a Copper Plating Formula at Low Chloride Concentration,” Electrochimica Acta, vol. 53, no. 10, pp. 3610-3619, 2008.
[32] M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthylene glycol on the Copper Surface in an Acid Copper Sulphate Bath,” Denki Kagaku., vol. 52, pp. 218, 1984.
[33] Z. V. Feng, and A. A. Gewirth, “Inhibition Due to the Interation of polyethylene Glycol, Chloride, and Copper in plating baths:A Surface Enhanced Raman Study,” J. Phys. Chem. B, vol. 107, pp. 9415, 2003.
[34] W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating,” Journal of The Electrochemical Society, vol. 152, no. 11, pp. C769, 2005.
[35] S. C. Chang, J. M. Shieha, K. C. Lin, and B. T. Dai, “Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers,” J. Vac. Sci. Technol. B, vol. 20, pp. C1311, 2002.
[36] N. Xiao, N. Li, G. Cui, D. Tian, S. Yu, Q. Li, and G. Wu, “Triblock Copolymers as Suppressors for Microvia Filling via Copper Electroplating,” Journal of the Electrochemical Society, vol. 160, no. 4, pp. D188-D195, 2013.
[37] N. Xiao, D. Li, G. Cui, N. Li, Q. Li, and G. Wu, “Adsorption behavior of triblock copolymer suppressors during the copper electrodeposition,” Electro chimica Acta, vol. 116, pp. 284-291, 2014.
[38] T. Okubo, K. Watanabe, and K. Kondo, “Analytical Study of the Characteristics of Cu(I) Species for the Via-Filling Electroplating Using a RRDE,” Journal of The Electrochemical Society, vol. 154, no. 3, pp. C181, 2007.
[39] Z. D. Schultz, Z. V. Feng, M. E. Biggin, and A. A. Gewirth, “Vibrational Spectroscopic and Mass Spectrometric Studies of the Interaction of Bis(3-sulfopropyl)-disulfide with Cu Surfaces,” Journal of The Electro chemical Society, vol. 153, no. 2, pp. C97, 2006.
[40] E. Garcia-Cardona, E. H. Wong, and D. P. Barkey, “NMR Spectral Studies of Interactions Between the Accelerants SPS and MPS and Copper Chlorides,” Journal of The Electrochemical Society, vol. 158, no. 3, pp. D143, 2011.
[41] M. L. Walker, L. J. Richter, and T. P. Moffat, “Competitive Adsorption of PEG, Cl[sup −], and SPS/MPS on Cu: An In Situ Ellipsometric Study,” Journal of The Electrochemical Society, vol. 153, no. 8, pp. C557, 2006.
[42] N. Zukauskaite, and A. Malinauskas, “Electroctatlysis by a Brightener in Copper Electrodeposition,” Sov. Electrochem., vol. 24, pp. 2564, 1989.
[43] J. P. Healy, and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartⅡ. The Instability of 4,5-Dithiaoctane -1,8-Disulphonic Acid in the Bath on Open Circuit,” J. Electroanal. Chem., vol. 338, pp. 167, 1992.
[44] T. Hayashi, S. Matsuura, K. Kondo, K. Kataoka, K. Nishimura, M. Yokoi, T. Saito, and N. Okamoto, “Role of Cuprous Ion in Copper Electrodeposition Acceleration,” Journal of the Electrochemical Society, vol. 162, no. 6, pp. D199-D203, 2015.
[45] E. Mattsson, and J. O. M. Bockris, “Galvanostic Studiew of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System,” Trans. Farady Soc., vol. 55, pp. C1586, 1959.
[46] M. Tan, C. Guymon, D. R. Wheeler, and J. N. Harb, “The Role of SPS, MPSA, and Chloride in Additive Systems for Copper Electrodeposition,” Journal of The Electrochemical Society, vol. 154, no. 2, pp. D78, 2007.
[47] W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide,” Journal of The Electrochemical Society, vol. 156, no. 4, pp. D155, 2009.
[48] S. Choe, M. J. Kim, H. C. Kim, S. K. Cho, S. H. Ahn, S. K. Kim, and J. J. Kim, “Degradation of Bis(3-sulfopropyl) Disulfide and Its Influence on Copper Electrodeposition for Feature Filling,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3179-D3185, 2013.
[49] R. Kimizuka, H. Toda, T. Eda, K. Kishimoto, R. Oh, H. Honma, and O. Takai, “Influence of SPS Decomposition Product 1,3-Propane Disulfonic Acid on Electrolytic Copper Via Filling Performance,” Journal of The Electrochemical Society, vol. 162, no. 12, pp. D584-D588, 2015.
[50] S. Choe, M. J. Kim, K. H. Kim, H. C. Kim, Y. Jeon, T. Y. Kim, S. K. Kim, and J. J. Kim, “High Accuracy Concentration Analysis of Accelerator Components in Acidic Cu Superfilling Bath,” Journal of the Electrochemical Society, vol. 163, no. 2, pp. D33-D39, 2015.
[51] S. K. Cho, S. K. Kim, and J. J. Kim, “Superconformal Cu Electrodeposition Using DPS,” Journal of The Electrochemical Society, vol. 152, no. 5, pp. C330, 2005.
[52] S. K. Cho, M. J. Kim, H. C. Koo, O. J. Kwon, and J. J. Kim, “Low-Resistivity Cu Film Electrodeposited with 3-N,N-Dimethylaminodithiocarbamoyl-1 -Propanesulfonate for the Application to the Interconnection of Electronic Devices,” Thin Solid Films, vol. 520, no. 6, pp. 2136-2141, 2012.
[53] I. Tabakovic, S. Riemer, and M. Sun, “Self-Assembled Monolayer of 3-N, N-Dimethylaminodithiocarbamoyl-1-Propanesulfonic Acid (DPS) Used in Electrodeposition of Copper,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3197-D3205, 2013.
[54] G. K. Gomma, “Effect of Azole Compounds on Corrosion of Copper in Acid Medium,” Mater. Chem. Phys., vol. 56, no. C27, 1998.
[55] S. K. Kim, D. Josell, and T. P. Moffat, “Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling,” Journal of The Electrochemical Society, vol. 153, no. 12, pp. C826, 2006.
[56] K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, “Copper Damascene Electrodeposition and Additives,” Journal of Electroanalytical Chemistry, vol. 559, pp. 137-142, 2003.
[57] K. Umemoto, “Electrochemical Studies of the Reduction Mechanism of Tetra zolium Salts and Formazans,” Bull. Chem. Soc. Jpn., vol. 62, pp. 3783, 1989.
[58] P. Rapta, V. Brezova, M. Ceppan, M. Melnik, D. Bustin, and A. Stasko, “Radical Intermediates in the Redox Reactions of Tetrazolium Salts in Aprotic Solvents,” Free Rad. Res., vol. 20, pp. 71, 1994.
[59] K. Umemoto, “Reduction Mechanism of 2,3,5-Triphenyltetrazolium Chloride and 1,3,5-Triphenylformazan,” Bull. Chem. Soc. Jpn., vol. 58, pp. 2051, 1985.
[60] T. Oritani, N. Fukuhara, T. Okajima, F. Kitamura, and T. Ohsaka, “Electrochemical and Spectroscopic Studies on Electron-Transfer Reaction Between Novel Water-Soluble Tetrazolium Salts and a Superoxide Ion,” Inorganica Chimica Acta, vol. 357, no. 2, pp. 436-442, 2004.
[61] S. Deng, X. Li, and H. Fu, “Nitrotetrazolium Blue Chloride as a Novel Corrosion Inhibitor of Steel in Sulfuric Acid Solution,” Corrosion Science, vol. 52, no. 11, pp. 3840-3846, 2010.
[62] Z. D. G. Gokce, H. Tezcan, E. Kilic, and H. Yilmaz, “Electrochemical Investigation of 1,3,5-Triphenylformazan and its Nitro Derivatives in Dimethyl Sulfoxide,” Anal. Sci., vol. 21, pp. 685, 2005.
[63] H. Ş. H. Tezcan, and N. Tokay, “Spectral and Electrochemical Behavior of 1-[(NO2, COOH)-Substituted Phenyl]-3,5-Diphenylformazans,” Monatshefte für Chemie - Chemical Monthly, vol. 143, no. 4, pp. 579-588, 2011.
[64] N. V. Parthasaradhy, “Practical Electroplating Handbook,” Prentice-Hall, Inc., 1989.
[65] L. Xu, Y. Xin, and J. Wang, “A Comparative Study on IrO2–Ta2O5 Coated Titanium Electrodes Prepared with Different Methods,” Electrochimica Acta, vol. 54, no. 6, pp. 1820-1825, 2009.
[66] S. Fierro, and C. Comninellis, “Kinetic Study of Formic Acid Oxidation on Ti/IrO2 Electrodes Prepared Using the Spin Coating Deposition Technique,” Electrochimica Acta, vol. 55, no. 23, pp. 7067-7073, 2010.
[67] S. S. Kim, and S. D. Kim, “Application of PVD Coatings for Developing a DSA-type Anode,” Thin Solid Films, vol. 516, no. 11, pp. 3673-3679, 2008.
[68] M. J. Kim, T. Lim, K. J. Park, S. K. Cho, S. K. Kim, and J. J. Kim, “Characteristics of Pulse-Reverse Electrodeposited Cu Thin Films: I. Effects of the Anodic Step in the Absence of an Organic Additive,” Journal of the Electrochemical Society, vol. 159, no. 9, pp. D538-D543, 2012.
[69] J. J. Sun, K. Kondo, T. Okamura, S. J. Oh, M. Tomisaka, H. Yonemura, M. Hoshino, and K. Takahashi, “High-Aspect-Ratio Copper Via Filling Used for Three-Dimensional Chip Stacking,” Journal of The Electrochemical Society, vol. 150, no. 6, pp. G355, 2003.
[70] T. Hayashi, K. Kondo, T. Saito, M. .Takeuchi, and N. Okamoto, “High-Speed Through Silicon Via(TSV) Filling Using Diallylamine Additive,” Journal of The Electrochemical Society, vol. 158, no. 12, pp. D715, 2011.
[71] N. V. Mandich, “Pulse and Pulse-Reverse Electroplating,” Metal Finish., vol. 98, pp. 374, 2000.
[72] “Linear Sweep and Cyclic Voltametry: The Principles,” http://www.cam.ac.uk/.
[73] “E-Learning Courses from the IITs & IISc,” http://nptel.ac.in/.
[74] R. G. Compton, and C. E. Banks, “Understanding Voltammetry,” World Scientific, 2007.
[75] Y. T. Lin, M. L. Wang, C. F. Hsu, W. P. Dow, S. M. Lin, and J. J. Yang, “Through-Hole Filling in a Cu Plating Bath with Functional Insoluble Anodes and Acetic Acid as a Supporting Electrolyte,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3149-D3153, 2013.
[76] Y. D. Chiu, and W. P. Dow, “Accelerator Screening by Cyclic Voltammetry for Microvia Filling by Copper Electroplating,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3021-D3027, 2013.
[77] 劉德暉, “新穎平整劑的開發及應用於電鍍銅填充盲、通孔,” 國立國立中興大學化學工程系碩士論文, 中華民國97年.[78] T. P. Moffat, and D. Josell, “Extreme bottom-up superfilling of through- silicon-vias by damascene processing: suppressor disruption, positive feedback and turing patterns,” Journal of The Electrochemical Society, vol. 159, no. 4, pp. D208-D216, 2012.
[79] H. L. Wu, and S. W. Lee, "TSV plating using copper methanesulfonate electrolyte with single component suppressor." pp. 1-5.
[80] M. J. Kim, Y. Seo, H. C. Kim, Y. Lee, S. Choe, Y. G. Kim, S. K. Cho, and J. J. Kim, “Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums,” Electrochimica Acta, vol. 163, pp. 174-181, 2015.
[81] G. M. Brown, and G. A. Hope, “A SERS study of SO2− 4Cl− ion adsorption at a copper electrode in-situ,” Journal of Electroanalytical Chemistry, vol. 405, no. 1, pp. 211-216, 1996.
[82] G. M. Brown, and G. A. Hope, “Confirmation of Thiourea/Chloride ion Coadsorption at a copper electrode by in situ SERS spectroscopy,” Journal of Electroanalytical Chemistry, vol. 413, no. 1, pp. 153-160, 1996.
[83] K. Doblhofer, S. Wasle, D. M. Soares, K. G. Weil, and G. Ertl, “An EQCM study of the electrochemical Copper (II)/Copper (I)/Copper System in the presence of PEG and Chloride ions,” Journal of The Electrochemical Society, vol. 150, no. 10, pp. C657-C664, 2003.
[84] A. J. Bard, and L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed., p.^pp. 137: Wiley New York, 2001.
[85] G. G. Láng, M. Ujvári, and G. Horányi, “New EQCM, voltammetric and radiotracer evidences proving the role of Cu+ ions in the behavior of the Cu 2+–Cu system,” Journal of Electroanalytical Chemistry, vol. 522, no. 2, pp. 179-188, 2002.
[86] C. Gabrielli, P. Moçotéguy, H. Perrot, and R. Wiart, “Mechanism of copper deposition in a sulphate bath containing chlorides,” Journal of Electroanalytical Chemistry, vol. 572, no. 2, pp. 367-375, 2004.
[87] Y. D. Chiu, W. P. Dow, K. Krug, Y. F. Liu, Y. L. Lee, and S. L. Yau, “Adsorption and desorption of bis-(3-sulfopropyl) disulfide during Cu electrodeposition and stripping at Au electrodes,” Langmuir, vol. 28, no. 40, pp. 14476-87, Oct 9, 2012.
[88] M. J. Rosen, “Selection of surfactant pairs for optimization of interfacial properties,” Journal of the American Oil Chemists’ Society, vol. 66, no. 12, pp. 1840-1843, 1989.
[89] C. F. Hsu, W. P. Dow, H. C. Chang, and W. Y. Chiu, “Optimization of the Copper Plating Process Using the Taguchi Experimental Design Method,” Journal of The Electrochemical Society, vol. 162, no. 10, pp. D525-D530, 2015.