(3.236.222.124) 您好!臺灣時間:2021/05/11 08:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉筑綺
研究生(外文):Chu-Chi Liu
論文名稱:高速填充微米孔洞之電鍍銅配方開發
論文名稱(外文):Copper Plating Formulation for High-Speed Microvias and Through-Hole Filling
指導教授:竇維平
指導教授(外文):Wei-Ping Dow
口試委員:萬其超姚學麟
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:122
中文關鍵詞:尺寸安定性陽極高速電鍍銅印刷電路板微孔通孔超級填充
外文關鍵詞:Dimensionally Stable AnodeHigh Speed Copper PlatingPrinted Circuit BoardMicroviaThrough-HoleSuperfilling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究目標為開發一可在短時間內完成超級填充(Super-filling)之填孔配方。電鍍系統中選用在高電流密度操作下具有長時間穩定性的尺寸安定性陽極及具有較長使用壽命的加速劑DPS。而本研究在此電鍍系統中,針對添加劑間的交互作用及物理參數如對流強度、操作溫度等的影響進行分析討論。
由結果發現,氯離子的吸附覆蓋率能主導複合抑制劑PEG-Cl- 的抑制效果,並且是影響在高電流密度下可否形成孔底上移(Bottom-up)的關鍵。而氯離子的吸附覆蓋率與對流強度呈正相關,因此填孔表現也與對流強度呈現正相關性。在強對流系統中,填孔表現與溫度成正比;在弱對流系統中,填孔表現則受到銅離子的質傳控制。另外,欲完成無空洞的通孔填充,其關鍵在於銅離子在孔中的質傳能力,因此可藉由強制對流在孔中形成對稱性的流場,加上低溫操作與高分子量聚乙二醇(PEG)的使用,達到通孔的快速填充。

To develop copper plating formulation for high-speed vias filling, a more stable insoluble anode, namely dimensionally stable anode (DSA), was used at high current density. We choose a novel accelerator, 3-(N,N-Dimethylthiocarbamoyl)-thio propanesulfonic acid (DPS), which has a longer lifetime in the DSA system and better performance for acceleration on copper superfilling deposition. This research investigates the influence of filling behavior between experimental condition and interaction of additives.
According to the results, the inhibition ability of complex inhibitor (PEG-Cl-) was positively in correlation with convection and filling performance of blind via filling. In a plating system with a strong forced convection and a low temperature exhibited better filling performance. Comparatively, the filling performance was Cu(II) mass-transfer controlled in the weakly forced convection system. And the most significant effect of void-free filling was the transport of cupric ion to the center of through hole in a symmetrical flow field.

摘要-i
Abstract-ii
目錄-iii
圖目錄-v
表目錄-viii
第1章 緒論
第1-1節 前言-p.1
第1-2節 研究動機與目的-p.2
第2章 文獻回顧與理論
第2-1節 電化學理論-p.3
2-1.1 電化學極化與過電位 -p.3
2-1.2 電子轉移與質傳控制-p.5
第2-2節 電鍍基本原理-p.9
第2-3節 金屬化製程-p.10
2-3.1 銅製程技術-p.10
2-3.2 填孔電鍍製程-p.13
第2-4節 酸性電鍍銅-p.23
2-4.1 電鍍添加劑-p.23
2-4.2 電鍍銅陽極材料-p.46
2-4.3 電鍍方式-p.48
第2-5節 電化學分析方法-p.50
2-5.1 線性掃描伏安法 (Linear Sweep Voltammetry, LSV)-p.50
2-5.2 循環伏安法 (Cyclic Voltammetry, CV)-p.51
2-5.3 計時電位/電流分析法-p.52
第3章 實驗藥品、裝置與步驟
第3-1節 實驗藥品-p.53
第3-2節 實驗陽極材料-p.54
第3-3節 實驗裝置-p.55
3-3.1 電鍍實驗裝置-p.55
3-3.2 恆電位/電流儀 (Potentiostats / Galvanostats)-p.58
3-3.3 金相顯微鏡 (Optical Microscope, OM)-p.59
第3-4節 實驗步驟-p.60
3-4.1 哈林試驗槽電鍍實驗 -p.60
3-4.2 電化學分析實驗-p.61
第4章 實驗結果與討論
第4-1節 尺寸安定性陽極系統 -p.62
4-1.1 尺寸安定性陽極材料之選擇-p.62
4-1.2 電鍍添加劑之選擇-p.62
4-1.3 陽極反應對電鍍填充之影響-p.67
第4-2節 高速盲孔填充之配方研究-p.70
4-2.1 新穎平整劑於盲孔填充之開發-p.70
4-2.2 氯離子對盲孔填充之影響-p.79
4-2.3 對流效應對盲孔填充之影響-p.85
4-2.4 溫度對盲孔填充之影響-p.88
第4-3節 高速通孔填充之配方研究-p.102
4-3.1 強制對流對通孔填充之影響-p.102
4-3.2 氫離子濃度對通孔填充之影響-p.105
4-3.3 氯離子濃度對通孔填充之影響-p.107
4-3.4 溫度對通孔填充之影響-p.109
第5章 結論
5-1.1 加速劑DPS於尺寸安定性陽極系統的作用分析-p.112
5-1.2 高速盲孔填充之配方研究-p.112
5-1.3 高速通孔填充之配方研究-p.113
第6章 未來研究方向
6-1.1 加速劑DPS於尺寸安定性陽極系統的作用分析-p.114
6-1.2 高速導孔填充之配方研究-p.114
第7章 參考文獻


[1] D. R. Gabe, and A. J. Cobley, “Catalytic Anodes for Electrodeposition: A Study for Acid Copper Printed Circuit Board (PCB) Production,” Circuit World, vol. 32, no. 3, pp. 3-10, 2006.
[2] 王美齡, “尺寸安定性陽極於填孔電鍍之應用,” 國立國立中興大學化學工程系碩士論文, 中華民國100年.
[3] 熊婉雲, “尺寸安定性陽極應用於矽穿孔填孔電鍍之研究,” 國立國立中興大學化學工程系碩士論文, 中華民國102年.
[4] 胡啟章, “電化學原理與方法,” 五南出版, 中華民國96年.
[5] T. Fuchigami, M. Atobe, and S. Inagi, “Fundamentals and Applications of Organic Electrochemistry,” John Wiley & Sons Inc., 2015.
[6] S. B. Strbac, and R. R. Adzic, “Electrocatalysis, Fundamentals -Electron Transfer Process; Current-Potential Relationship; Volcano Plots,” Springer New York, 2014.
[7] W. Schmickler, and E. Santos, Interfacial electrochemistry: Springer Science & Business Media, 2010.
[8] A. J. Bard, and L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications,” John Wiley & Sons Inc., 2011.
[9] R. Liu, J. Duay, and S. B. Lee, “Heterogeneous nanostructured electrode materials for electrochemical energy storage,” Chem Commun (Camb), vol. 47, no. 5, pp. 1384-404, Feb 7, 2011.
[10] H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice-Hall Inc., 2001.
[11] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections,” IBM J. Res. & Dev., vol. 42, pp. 567, 1998.
[12] J. J. Kelly, C. Tian, and A. C. West, “Leveling and Microstructural Effects of Additives for Copper Electrodeposition,” Journal of the Electrochemical Society, vol. 146, no. 7, pp. 2540-2545, 1999.
[13] A. C. West, “Theory of Filling of High‐Aspect Ratio Trenches and Vias in Presence of Additives,” Journal of The Electrochemical Society, vol. 147, no. 1, pp. 227-232, 2000.
[14] P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition,” Journal of The Electrochemical Society, vol. 148, no. 7, pp. C492, 2001.
[15] T. P. Moffat, D. Wheeler, W. H. Huber, and D. Josell, “Superconformal electrodeposition of copper,” Electrochemical and Solid-State Letters, vol. 4, no. 4, pp. C26-C29, 2001.
[16] T. P. Moffat, D. Wheeler, S. K. Kim, and D. Josell, “Curvature Enhanced Adsorbate Coverage Model for Electrodeposition,” Journal of The Electro chemical Society, vol. 153, no. 2, pp. C127, 2006.
[17] R. Tenno, and A. Pohjoranta, “An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives,” Journal of The Electrochemical Society, vol. 155, no. 5, pp. D383, 2008.
[18] K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking,” Journal of The Electrochemical Society, vol. 152, no. 11, pp. H173, 2005.
[19] W. P. Dow, H. S. Huang, M. Y. Yen, and H. C. Huang, “Influence of Convection-Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating,” Journal of The Electrochemical Society, vol. 152, no. 6, pp. C425, 2005.
[20] W. P. Dow, and C. W. Liu, “Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method,” Journal of The Electrochemical Society, vol. 153, no. 3, pp. C190, 2006.
[21] M. Lefebvre, L. Barstad, and L. Gomez, “Copper Electroplating for HDI and IC Substrate Through Hole Filling,” Dow Chemical Materials, 2012.
[22] P. Dixit, and J. Miao, “Aspect-Ratio-Dependent Copper Electrodeposition Technique for Very High Aspect-Ratio Through-Hole Plating,” Journal of The Electrochemical Society, vol. 153, no. 6, pp. G552-G559, 2006.
[23] W. P. Dow, H. H. Chen, M. Y. Yen, W. H. Chen, K. H. Hsu, P. Y. Chuang, H. Ishizuka, N. Sakagawa, and R. Kimizuka, “Through-Hole Filling by Copper Electroplating,” Journal of The Electrochemical Society, vol. 155, no. 12, pp. D750-D757, 2008.
[24] G. Y. Lin, J. J. Yan, M. Y. Yen, W. P. Dow, and S. M. Huang, “Characterization of through-hole filling by copper electroplating using a tetrazolium salt inhibitor,” Journal of The Electrochemical Society, vol. 160, no. 12, pp. D3028-D3034, 2013.
[25] J. J. Yan, L. C. Chang, C. W. Lu, and W. P. Dow, “Effects of organic acids on through-hole filling by copper electroplating,” Electrochimica Acta, vol. 109, pp. 1-12, 2013.
[26] W. P. Dow, C. W. Lu, J. Y. Lin, and F. C. Hsu, “Highly Selective Cu Electrodeposition for Filling Through Silicon Holes,” Electrochemical and Solid-State Letters, vol. 14, no. 6, pp. D63-D67, 2011.
[27] C. H. Chen, C. W. Lu, S. M. Huang, and W. P. Dow, “Effects of Supporting Electrolytes on Copper Electroplating for Filling Through-Hole,” Electro chimica Acta, vol. 56, no. 17, pp. 5954-5960, 2011.
[28] Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction,” J. Electrochem. Soc., vol. 142, pp. L87, 1995.
[29] W. P. Dow, and H. S. Huang, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition,” Journal of The Electrochemical Society, vol. 152, no. 2, pp. C67, 2005.
[30] D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, “Copper Ion Reduction Catalyzed by Chloride Ions,” J. Electroanal. Chem., vol. 532, pp. 353, 2002.
[31] W. P. Dow, M. Y. Yen, C. W. Liu, and C. C. Huang, “Enhancement of Filling Performance of a Copper Plating Formula at Low Chloride Concentration,” Electrochimica Acta, vol. 53, no. 10, pp. 3610-3619, 2008.
[32] M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthylene glycol on the Copper Surface in an Acid Copper Sulphate Bath,” Denki Kagaku., vol. 52, pp. 218, 1984.
[33] Z. V. Feng, and A. A. Gewirth, “Inhibition Due to the Interation of polyethylene Glycol, Chloride, and Copper in plating baths:A Surface Enhanced Raman Study,” J. Phys. Chem. B, vol. 107, pp. 9415, 2003.
[34] W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating,” Journal of The Electrochemical Society, vol. 152, no. 11, pp. C769, 2005.
[35] S. C. Chang, J. M. Shieha, K. C. Lin, and B. T. Dai, “Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers,” J. Vac. Sci. Technol. B, vol. 20, pp. C1311, 2002.
[36] N. Xiao, N. Li, G. Cui, D. Tian, S. Yu, Q. Li, and G. Wu, “Triblock Copolymers as Suppressors for Microvia Filling via Copper Electroplating,” Journal of the Electrochemical Society, vol. 160, no. 4, pp. D188-D195, 2013.
[37] N. Xiao, D. Li, G. Cui, N. Li, Q. Li, and G. Wu, “Adsorption behavior of triblock copolymer suppressors during the copper electrodeposition,” Electro chimica Acta, vol. 116, pp. 284-291, 2014.
[38] T. Okubo, K. Watanabe, and K. Kondo, “Analytical Study of the Characteristics of Cu(I) Species for the Via-Filling Electroplating Using a RRDE,” Journal of The Electrochemical Society, vol. 154, no. 3, pp. C181, 2007.
[39] Z. D. Schultz, Z. V. Feng, M. E. Biggin, and A. A. Gewirth, “Vibrational Spectroscopic and Mass Spectrometric Studies of the Interaction of Bis(3-sulfopropyl)-disulfide with Cu Surfaces,” Journal of The Electro chemical Society, vol. 153, no. 2, pp. C97, 2006.
[40] E. Garcia-Cardona, E. H. Wong, and D. P. Barkey, “NMR Spectral Studies of Interactions Between the Accelerants SPS and MPS and Copper Chlorides,” Journal of The Electrochemical Society, vol. 158, no. 3, pp. D143, 2011.
[41] M. L. Walker, L. J. Richter, and T. P. Moffat, “Competitive Adsorption of PEG, Cl[sup −], and SPS/MPS on Cu: An In Situ Ellipsometric Study,” Journal of The Electrochemical Society, vol. 153, no. 8, pp. C557, 2006.
[42] N. Zukauskaite, and A. Malinauskas, “Electroctatlysis by a Brightener in Copper Electrodeposition,” Sov. Electrochem., vol. 24, pp. 2564, 1989.
[43] J. P. Healy, and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartⅡ. The Instability of 4,5-Dithiaoctane -1,8-Disulphonic Acid in the Bath on Open Circuit,” J. Electroanal. Chem., vol. 338, pp. 167, 1992.
[44] T. Hayashi, S. Matsuura, K. Kondo, K. Kataoka, K. Nishimura, M. Yokoi, T. Saito, and N. Okamoto, “Role of Cuprous Ion in Copper Electrodeposition Acceleration,” Journal of the Electrochemical Society, vol. 162, no. 6, pp. D199-D203, 2015.
[45] E. Mattsson, and J. O. M. Bockris, “Galvanostic Studiew of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System,” Trans. Farady Soc., vol. 55, pp. C1586, 1959.
[46] M. Tan, C. Guymon, D. R. Wheeler, and J. N. Harb, “The Role of SPS, MPSA, and Chloride in Additive Systems for Copper Electrodeposition,” Journal of The Electrochemical Society, vol. 154, no. 2, pp. D78, 2007.
[47] W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide,” Journal of The Electrochemical Society, vol. 156, no. 4, pp. D155, 2009.
[48] S. Choe, M. J. Kim, H. C. Kim, S. K. Cho, S. H. Ahn, S. K. Kim, and J. J. Kim, “Degradation of Bis(3-sulfopropyl) Disulfide and Its Influence on Copper Electrodeposition for Feature Filling,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3179-D3185, 2013.
[49] R. Kimizuka, H. Toda, T. Eda, K. Kishimoto, R. Oh, H. Honma, and O. Takai, “Influence of SPS Decomposition Product 1,3-Propane Disulfonic Acid on Electrolytic Copper Via Filling Performance,” Journal of The Electrochemical Society, vol. 162, no. 12, pp. D584-D588, 2015.
[50] S. Choe, M. J. Kim, K. H. Kim, H. C. Kim, Y. Jeon, T. Y. Kim, S. K. Kim, and J. J. Kim, “High Accuracy Concentration Analysis of Accelerator Components in Acidic Cu Superfilling Bath,” Journal of the Electrochemical Society, vol. 163, no. 2, pp. D33-D39, 2015.
[51] S. K. Cho, S. K. Kim, and J. J. Kim, “Superconformal Cu Electrodeposition Using DPS,” Journal of The Electrochemical Society, vol. 152, no. 5, pp. C330, 2005.
[52] S. K. Cho, M. J. Kim, H. C. Koo, O. J. Kwon, and J. J. Kim, “Low-Resistivity Cu Film Electrodeposited with 3-N,N-Dimethylaminodithiocarbamoyl-1 -Propanesulfonate for the Application to the Interconnection of Electronic Devices,” Thin Solid Films, vol. 520, no. 6, pp. 2136-2141, 2012.
[53] I. Tabakovic, S. Riemer, and M. Sun, “Self-Assembled Monolayer of 3-N, N-Dimethylaminodithiocarbamoyl-1-Propanesulfonic Acid (DPS) Used in Electrodeposition of Copper,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3197-D3205, 2013.
[54] G. K. Gomma, “Effect of Azole Compounds on Corrosion of Copper in Acid Medium,” Mater. Chem. Phys., vol. 56, no. C27, 1998.
[55] S. K. Kim, D. Josell, and T. P. Moffat, “Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling,” Journal of The Electrochemical Society, vol. 153, no. 12, pp. C826, 2006.
[56] K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, “Copper Damascene Electrodeposition and Additives,” Journal of Electroanalytical Chemistry, vol. 559, pp. 137-142, 2003.
[57] K. Umemoto, “Electrochemical Studies of the Reduction Mechanism of Tetra zolium Salts and Formazans,” Bull. Chem. Soc. Jpn., vol. 62, pp. 3783, 1989.
[58] P. Rapta, V. Brezova, M. Ceppan, M. Melnik, D. Bustin, and A. Stasko, “Radical Intermediates in the Redox Reactions of Tetrazolium Salts in Aprotic Solvents,” Free Rad. Res., vol. 20, pp. 71, 1994.
[59] K. Umemoto, “Reduction Mechanism of 2,3,5-Triphenyltetrazolium Chloride and 1,3,5-Triphenylformazan,” Bull. Chem. Soc. Jpn., vol. 58, pp. 2051, 1985.
[60] T. Oritani, N. Fukuhara, T. Okajima, F. Kitamura, and T. Ohsaka, “Electrochemical and Spectroscopic Studies on Electron-Transfer Reaction Between Novel Water-Soluble Tetrazolium Salts and a Superoxide Ion,” Inorganica Chimica Acta, vol. 357, no. 2, pp. 436-442, 2004.
[61] S. Deng, X. Li, and H. Fu, “Nitrotetrazolium Blue Chloride as a Novel Corrosion Inhibitor of Steel in Sulfuric Acid Solution,” Corrosion Science, vol. 52, no. 11, pp. 3840-3846, 2010.
[62] Z. D. G. Gokce, H. Tezcan, E. Kilic, and H. Yilmaz, “Electrochemical Investigation of 1,3,5-Triphenylformazan and its Nitro Derivatives in Dimethyl Sulfoxide,” Anal. Sci., vol. 21, pp. 685, 2005.
[63] H. Ş. H. Tezcan, and N. Tokay, “Spectral and Electrochemical Behavior of 1-[(NO2, COOH)-Substituted Phenyl]-3,5-Diphenylformazans,” Monatshefte für Chemie - Chemical Monthly, vol. 143, no. 4, pp. 579-588, 2011.
[64] N. V. Parthasaradhy, “Practical Electroplating Handbook,” Prentice-Hall, Inc., 1989.
[65] L. Xu, Y. Xin, and J. Wang, “A Comparative Study on IrO2–Ta2O5 Coated Titanium Electrodes Prepared with Different Methods,” Electrochimica Acta, vol. 54, no. 6, pp. 1820-1825, 2009.
[66] S. Fierro, and C. Comninellis, “Kinetic Study of Formic Acid Oxidation on Ti/IrO2 Electrodes Prepared Using the Spin Coating Deposition Technique,” Electrochimica Acta, vol. 55, no. 23, pp. 7067-7073, 2010.
[67] S. S. Kim, and S. D. Kim, “Application of PVD Coatings for Developing a DSA-type Anode,” Thin Solid Films, vol. 516, no. 11, pp. 3673-3679, 2008.
[68] M. J. Kim, T. Lim, K. J. Park, S. K. Cho, S. K. Kim, and J. J. Kim, “Characteristics of Pulse-Reverse Electrodeposited Cu Thin Films: I. Effects of the Anodic Step in the Absence of an Organic Additive,” Journal of the Electrochemical Society, vol. 159, no. 9, pp. D538-D543, 2012.
[69] J. J. Sun, K. Kondo, T. Okamura, S. J. Oh, M. Tomisaka, H. Yonemura, M. Hoshino, and K. Takahashi, “High-Aspect-Ratio Copper Via Filling Used for Three-Dimensional Chip Stacking,” Journal of The Electrochemical Society, vol. 150, no. 6, pp. G355, 2003.
[70] T. Hayashi, K. Kondo, T. Saito, M. .Takeuchi, and N. Okamoto, “High-Speed Through Silicon Via(TSV) Filling Using Diallylamine Additive,” Journal of The Electrochemical Society, vol. 158, no. 12, pp. D715, 2011.
[71] N. V. Mandich, “Pulse and Pulse-Reverse Electroplating,” Metal Finish., vol. 98, pp. 374, 2000.
[72] “Linear Sweep and Cyclic Voltametry: The Principles,” http://www.cam.ac.uk/.
[73] “E-Learning Courses from the IITs & IISc,” http://nptel.ac.in/.
[74] R. G. Compton, and C. E. Banks, “Understanding Voltammetry,” World Scientific, 2007.
[75] Y. T. Lin, M. L. Wang, C. F. Hsu, W. P. Dow, S. M. Lin, and J. J. Yang, “Through-Hole Filling in a Cu Plating Bath with Functional Insoluble Anodes and Acetic Acid as a Supporting Electrolyte,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3149-D3153, 2013.
[76] Y. D. Chiu, and W. P. Dow, “Accelerator Screening by Cyclic Voltammetry for Microvia Filling by Copper Electroplating,” Journal of the Electrochemical Society, vol. 160, no. 12, pp. D3021-D3027, 2013.
[77] 劉德暉, “新穎平整劑的開發及應用於電鍍銅填充盲、通孔,” 國立國立中興大學化學工程系碩士論文, 中華民國97年.
[78] T. P. Moffat, and D. Josell, “Extreme bottom-up superfilling of through- silicon-vias by damascene processing: suppressor disruption, positive feedback and turing patterns,” Journal of The Electrochemical Society, vol. 159, no. 4, pp. D208-D216, 2012.
[79] H. L. Wu, and S. W. Lee, "TSV plating using copper methanesulfonate electrolyte with single component suppressor." pp. 1-5.
[80] M. J. Kim, Y. Seo, H. C. Kim, Y. Lee, S. Choe, Y. G. Kim, S. K. Cho, and J. J. Kim, “Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums,” Electrochimica Acta, vol. 163, pp. 174-181, 2015.
[81] G. M. Brown, and G. A. Hope, “A SERS study of SO2− 4Cl− ion adsorption at a copper electrode in-situ,” Journal of Electroanalytical Chemistry, vol. 405, no. 1, pp. 211-216, 1996.
[82] G. M. Brown, and G. A. Hope, “Confirmation of Thiourea/Chloride ion Coadsorption at a copper electrode by in situ SERS spectroscopy,” Journal of Electroanalytical Chemistry, vol. 413, no. 1, pp. 153-160, 1996.
[83] K. Doblhofer, S. Wasle, D. M. Soares, K. G. Weil, and G. Ertl, “An EQCM study of the electrochemical Copper (II)/Copper (I)/Copper System in the presence of PEG and Chloride ions,” Journal of The Electrochemical Society, vol. 150, no. 10, pp. C657-C664, 2003.
[84] A. J. Bard, and L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed., p.^pp. 137: Wiley New York, 2001.
[85] G. G. Láng, M. Ujvári, and G. Horányi, “New EQCM, voltammetric and radiotracer evidences proving the role of Cu+ ions in the behavior of the Cu 2+–Cu system,” Journal of Electroanalytical Chemistry, vol. 522, no. 2, pp. 179-188, 2002.
[86] C. Gabrielli, P. Moçotéguy, H. Perrot, and R. Wiart, “Mechanism of copper deposition in a sulphate bath containing chlorides,” Journal of Electroanalytical Chemistry, vol. 572, no. 2, pp. 367-375, 2004.
[87] Y. D. Chiu, W. P. Dow, K. Krug, Y. F. Liu, Y. L. Lee, and S. L. Yau, “Adsorption and desorption of bis-(3-sulfopropyl) disulfide during Cu electrodeposition and stripping at Au electrodes,” Langmuir, vol. 28, no. 40, pp. 14476-87, Oct 9, 2012.
[88] M. J. Rosen, “Selection of surfactant pairs for optimization of interfacial properties,” Journal of the American Oil Chemists’ Society, vol. 66, no. 12, pp. 1840-1843, 1989.
[89] C. F. Hsu, W. P. Dow, H. C. Chang, and W. Y. Chiu, “Optimization of the Copper Plating Process Using the Taguchi Experimental Design Method,” Journal of The Electrochemical Society, vol. 162, no. 10, pp. D525-D530, 2015.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔