(3.235.139.152) 您好!臺灣時間:2021/05/11 05:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳樺
研究生(外文):Jia-Hua Lin
論文名稱:超音波輔助相間轉移觸媒在含離子液體的固-液系統合成鄰-羥基苯甲酸丁酯之研究
論文名稱(外文):Synthesis of o-Hydroxybenzoic Acid Butyl Ester by Ultrasound-Assisted Phase-Transfer Catalysis with Ionic Liquid in Solid-Liquid System
指導教授:鄭文桐楊鴻銘楊鴻銘引用關係
指導教授(外文):Wen-Tung ChengHung-Ming Yang
口試委員:王俊欽
口試日期:2016-06-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:115
中文關鍵詞:相間轉移觸媒超音波固-液相動力學離子液體鄰-羥基苯甲酸丁酯
外文關鍵詞:Phase-transfer catalystUltrasoundSolid-liquid phaseKineticsIonic liquido-Hydroxybenzoic Acid Butyl Ester
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討以超音波輔助相間轉移觸媒在含離子液體的固-液相下催化鄰-羥基苯甲酸鈉與溴丁烷合成鄰-羥基苯甲酸丁酯之酯化反應。研究內容包含探討超音波、觸媒種類、觸媒添加量、離子液體、攪拌速率及溫度對固-液相催化酯化反應的影響。

  從反應機制來觀察,有機相反應物與觸媒中間體主要在固相及有機相的界面處進行本質反應。當加入離子液體時,則會促進觸媒中間體進行反應。加入鏻系離子液體對本系統的催化有非常大的助益。在不添加離子液體及觸媒時產率為0%;而添加觸媒不加離子液體,反應150分鐘後產率僅有21.08%;而添加離子液體不加觸媒,反應150分鐘後產率僅有37.47%;添加觸媒及離子液體在相同反應時間產率可達75.51%。超音波輔助催化方面,有超音波輔助反應的反應速率會比無超音波輔助反應時快,由此可見超音波輔助有相當的助益。由實驗結果可知離子液體三己基十四烷基鏻二(三甲基戊基)磷酸(Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate)在本反應系統的催化能力最好。

  在本系統中,當完全不添加水時,反應150分鐘產率達75.51%,若添加水後,系統由固-液相轉變成液-液相,產率將降低至20.09%。當使用高極性甲基異丁基酮會有最佳催化效果,使用低極性或無極性的溶劑如甲苯與正庚烷時反應性會較低,考量綠色反應需求,因此選用正庚烷作為溶劑。

  反應結果可用擬零階反應動力式來描述,以正庚烷為溶劑,實驗結果可用動力學方程式Y=kappt (Y<1)表示,式中Y為產物產率,kapp為修飾之視零階反應速率常數。加入超音波(28 kHz/300 W)對本反應系統可將無超音波輔助之視零階反應速率常數kapp提升2.7倍左右,顯示應用超音波可大幅促進反應速率。經Arrhenius方程式計算可得有超音波的視反應活化能為16.75 kcal/mol,而無超音波時之視反應活化能為16.52 kcal/mol。


 In this study, o-hydroxybenzoic acid butyl ester was synthesized from the reaction of sodium salicylate and 1-bromobutane via a phase-transfer catalyst,under ultrasound irradiation in a solid-liquid batch system with ionic liquid. The explored operating parameters included ultrasound, types of catalyst, addition catalyst, ionic liquid , agitation speed, temperature,etc..

  For the reaction mechanism, the reactions dominated to conduct in the interface between the organic and solid phases. As adding ionic liquid in the system, the reaction of catalytic intermediate was promoted. Using ionic liquid would be beneficial to the present esterification, especially for phosphonium-based ionic liquid. The product yield was 0% without adding both ionic liquid and catalyst. The yield raised to 21.08% when adding catalyst but without ionic liquid in 150 minutes; The yield was 37.47% with adding ionic liquid but without catalyst in 150 minutes, and further increased to 75.51% with both catalyst and ionic liquid. By using ultrasonic irradiation, the overall reaction rate was higher than without ultrasound. When using ionic liquid trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate combined with the catayst, there would be the best catalytic efficiency among the tested ionic liquids.

  In this solid-liquid system, the yield was75.51 % in 150 minutes without adding water; by adding water, the system became a liquid-liquid type and the yield declined to 20.09% When using highly polar solvents such as methyl isobutyl ketone, there would be a high catalytic effect. To use the low-polar or non-polar solvents such as toluene and heptane, the yield would be lowered, indicating the level of solvent polarity influencing the yield. Due to the requirement of green reaction , heptane was selected as the solvent.

  Pesudo-zero-order kinetic equation was applied to describe experimental results. Using heptane as solvent, the kinetic results were correlated by using Y=kappt (Y<1) equation successfully , where Y was product yield and kapp was modified apparent-zero-order rate constant. With ultrasound (28 kHz/300 W) in this reaction system, kapp was raised to a value 2.7 times of that without ultrasound, showing a great enhancement in reaction rate by applying ultrasound. Using Arrhenius'' equation to estimate the apparent activation energy, the apparent activation energy was 16.75 kcal/mol with ultrasound,and was 16.52 kcal/mol without ultrasound.


目錄
誌謝 i
摘要 ii
Abstract iv
目錄 vi
表目錄 x
圖目錄 xi
符號說明 xiv
第一章 緒論 1
一、前言 1
二、相間轉移觸媒簡介 2
(一)相間轉移觸媒結構分類 3
(二)相間轉移觸媒反應型態 7
三、固液相相間轉移觸媒催化反應 14
(一)固液相相間轉移觸媒催化反應發展與回顧 14
(二)固液相相間轉移催化反應原理 17
四、酯化反應 21
(一) 一般酯類合成方法 21
(二) 相間轉移觸媒催化反應合成酯類 23
五、超音波原理與應用 24
(一) 超音波反應原理 24
(二) 超音波發振儀器 26
(三) 超音波在相間轉移催化反應的應用 27
六、離子液體的簡介 29
(一) 離子液體的發展與回顧 29
(二) 離子液體的特性 31
七、研究目的與方法 33
第二章 實驗設備與實驗方法 36
一、實驗藥品 36
二、實驗設備與分析儀器 38
三、產物合成 41
四、校正曲線 42
五、反應動力學實驗步驟 44
第三章 超音波及離子液體輔助單活性基相間轉移觸媒於固液相催化酯化合成鄰-羥基苯甲酸丁酯 45
一、 前言 45
二、反應機構與動力學模式推導 46
(一)反應機構 46
(二)反應動力學推導 47
三、再現性測試 51
四、不同相間轉移觸媒對催化反應的影響 53
五、相間轉移觸媒添加量對催化反應的影響 56
六、離子液體種類對催化反應的影響 59
七、離子液體添加量對催化反應的影響 62
八、攪拌速率對催化反應的影響 64
九、超音波效應 67
(一)不同超音波功率對反應的影響 67
(二)不同超音波頻率對反應的影響 71
十、離子液體與相間轉移觸媒交互作用對催化反應的影響 74
十一、超音波與離子液體交互作用對催化反應的影響 76
十二、超音波與攪拌速率交互作用對催化反應的影響 81
十三、有機溶劑對催化反應的影響 84
十四、有機相反應物添加量對催化反應的影響 87
十五、溫度效應 90
(一) 無超音波輔助下,溫度效應對反應的影響 90
(二) 於超音波輔助下,溫度效應對反應的影響 92
(三) 活化能計算 95
十六、水用量對催化反應的影響 98
十七、結論 101
第四章 總結 106
參考文獻 110
附錄 115


表目錄
表3- 1 視零階反應常數及產率對不同種觸媒之關係 55
表3- 2 視零階反應常數及產率對不同觸媒添加量之關係 58
表3- 3 視零階反應常數及產率對不同攪拌速率之關係 66
表3- 4 視零階反應常數及產率對不同超音波功率之關係 70
表3- 5 視零階反應常數及產率對不同超音波頻率之關係 73
表3- 6 視零階反應常數及產率對離子液體與觸媒交叉作用之關係 79
表3- 7 視零階反應常數及產率對超音波與離子液體交叉作用之關係 80
表3- 8 視零階反應常數及產率對超音波與攪拌速率交叉作用之關係 83
表3- 9 視零階反應常數及產率對不同有機溶劑之關係 86
表3- 10 視零階反應常數及產率對不同有機相反應物添加量之關係 89
表3- 11 視零階反應常數及產率對不同反應溫度之關係 94
表3- 12有無超音波的活化能(Ea)與頻率因子(A) 97
表3- 13 視零階反應常數對不同水用量之關係 100

圖目錄
圖1- 1對掌性相間轉移觸媒(1) 6
圖1- 2對掌性相間轉移觸媒(2) 6
圖1- 3相間轉移觸媒催化反應分類 7
圖1- 4 Starks萃取機制之液-液正相相間轉移觸媒催化反應機構示意圖 8
圖1- 5 Starks萃取機制之液-液反相相間轉移觸媒催化反應機構示意圖 9
圖1- 6 Starks萃取機制之液-液逆相相間轉移觸媒催化反應機構示意圖 10
圖1- 7 Makosza 界面機制之反應機構示意圖 10
圖1- 8勻相溶解系統 15
圖1- 9非勻相溶解系統 16
圖1- 10在超音波放射下液體中空泡的成長與崩裂 25
圖1- 11超音波所產生的空穴效應及熱點之示意圖[27] 26
圖1- 12超音波發振儀器 (a) 探針式;(b) 液槽式 [28] 27
圖1- 13實驗反應圖 34
圖1- 14實驗規劃圖 34
圖2- 1 超音波批式反應實驗裝置圖 40
圖2- 2 超音波振盪槽之發振示意圖 40
圖2- 3 鄰-羥基苯甲酸丁酯(o-Hydroxybenzoic Acid Butyl Ester)對內標物(Diphenyl methane)之校正曲線 43
圖3- 1超音波輔助固液相單活性基相間轉移觸媒催化反應機制圖 46
圖3- 2 再現性,產率對時間作圖 51
圖3- 3 再現性,產率平均值對時間作圖 52
圖3- 4 不同觸媒,產率對時間作圖 54
圖3- 5 不同觸媒添加量,產率對時間作圖 57
圖3- 6 離子液體結構(Ⅰ) 60
圖3- 7 離子液體結構(Ⅱ) 60
圖3- 8 離子液體結構(Ⅲ) 60
圖3- 9 不同的離子液體種類,產率對時間作圖 61
圖3- 10 不同的離子液體添加量,產率對時間作圖 63
圖3- 11 不同攪拌速率,產率對時間作圖 65
圖3- 12 不同超音波功率,產率對時間作圖 69
圖3- 13 不同超音波頻率,產率對時間作圖 72
圖3- 14 離子液體與觸媒交互作用,產率對時間作圖 75
圖3- 15 超音波與離子液體交互作用,產率對時間作圖 78
圖3- 16 超音波與攪拌速率交互作用,產率對時間作圖 82
圖3- 17 不同有機溶劑,產率對時間作圖 85
圖3- 18 不同有機相反應物添加量,產率對時間作圖 88
圖3- 19無超音波輔助下不同反應溫度,產率對時間作圖 91
圖3- 20於超音波輔助下不同反應溫度,產率對時間作圖 93
圖3- 21 Arrheniu’s方程式,-ln(kapp)對1000/T作圖 96
圖3- 22不同水量,產率對時間作圖 99
圖4- 1實驗歸納圖 109



[1]J. Jarrouse, "The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives," C.R Heabd. Seances Acad. Sci, vol. 232, p. 1424, 1951.
[2]C. M. Starks, "Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts," J. Am. Chem. Soc., vol. 93, pp. 195-199, 1971.
[3]A.W. Herriott and D. Picker, "Phase transfer catalysis. An evaluation of catalysts," J. Am. Chem. Soc. , vol. 97, pp. 2345-2349, 1975.
[4]Brandstrom, "Preparative Ion Pair Extraction, An Introduction to Theory and Pratice," Apotekarsocieteten / Hassle, Lakemedel, Sweden, pp. 139-148, 1974.
[5]C. J. Pederson, "Cyclic Polyeyhers and Their Complexes with Metal Salts," J. Am. Chem. Soc. , vol. 89, pp. 7071-7036, 1967.
[6]K. Manabe, "Synthesis of novel chiral quaternary phosphonium salts with a multiple hydrogen-bonding site, and their application to asymmetric phase-transfer alkylation," Tetrahedron Letters, vol. 54, p. 14465, 1998.
[7]T. Ooi, Y. Uematsu, J. Fujimoto, K. Fukumoto, and K. Maruoka, "Advantage of in situ generation of N-arylsulfonyl imines from α-amide sulfones in the phase-transfer-catalyzed asymmetric Strecker reaction," Tetrahedron Letters, vol. 48, pp. 1337-1340, 2007.
[8]M. Makosza and E.Bialecka, "Reactions of organic anionx. LXXIII. Alkylation of phenylacetonitrile at the interface with aqueous sodium hydroxide," Tetrahedron Letters, vol. 2, pp. 183-186, 1977.
[9]C.M. Starks, C.L. Loitta, and M. Halpern, "Phase transfer catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall," New York, 1994.
[10]E. Angeletti, P. Tundo, and P. Venturello, "The Wittig synthesis of alkenes under gas–liquid phase-transfer catalysis," Journal of the Chemical Society. Chemical communications, vol. 6, pp. 269-271, 1983.
[11]S.L. Regen, J.J. Besse, and J. Mcliick, "Solid Phase Cosolvent Triphase Catalytic Hydrolysis of 1-Bromoadamantane," J. Am. Chem. Soc., vol. 101, pp. 166-120, 1979.
[12]S. Baj, A. Siewniak, and B. Socha, "Synthesis of dialkyl peroxides in the presence of polymer-supported phase-transfer catalysts," Applied Catalysis A: General, vol. 309, pp. 85-90, 2006.
[13]H. M. Yang and C. C. Chiu, "Ultrasound-assisted phase-transfer catalysis: benzoylation of sodium 4-acetylphenoxide by dual-site phase-transfer catalyst in a tri-liquid system," Ultrason Sonochem, vol. 18, pp. 363-9, Jan 2011.
[14]M. Fedorynski, K. Wojciechowski, Z. Matacz, and M. Makosza, "Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two Phase Systems," J. Org. Chem., vol. 43, p. 4682, 1978.
[15]G.D. Yadv and M. M. Sharma, "Kinetics of reaction of benzyl chloride with sodium acetate/benzoate: phase transfer catalysis in solid-liquid system.," Ind. Eng. Chem. Prod. Res. Dev. , vol. 20, pp. 385-390, 1987.
[16]S. D. Naik and L. K. Doraiswamy, "Mathematical Modeling of Solid-Liquid Phase Transfer Catalysis," Chem. Eng. Sci., vol. 52, pp. 4553-4546, 1997.
[17]H. M. Yang and P. I. Wu, "Kinetics of phase-transfer catalyzed esterification of aliphatic dicarboxylate in solid–liquid system," Applied Catalysis A: General, vol. 209, pp. 17-26, 2001.
[18]V. G. Devulapelli and H. S. Weng, "Synthesis of cinnamyl acetate by solid–liquid phase transfer catalysis: Kinetic study with a batch reactor," Catalysis Communications, vol. 10, pp. 1638-1642, 2009.
[19]H. M. Yang and W. M. Chu, "Esterification of sodium 4-hydroxybenzoate by ultrasound-assisted solid-liquid phase-transfer catalysis using dual-site phase-transfer catalyst," Ultrason Sonochem, vol. 21, pp. 395-400, Jan 2014.
[20]J. B. Melville and J. D. Goddard, "A Solid-Liquid Phase-Transfer Catalysis in Rotating-Disk Flow," Ind. Eng. Chem. Res. , vol. 27, p. 511, 1988.
[21]H. A. Zahalka and Y. Sasson, "The Key Role of Water in Solid-Liquid Phase Transfer-Catalyzed Substitution Reactions," J. Chem. Soc. Chem. Commun., pp. 1652-1654, 1984.
[22]G. Maerker, J.F. Carmichael, and W. S. Port, "Glycidl Ester Method of preparation and study of Some reaction Variables," J. Org. Chem., vol. 26, pp. 2681-2688, 1961.
[23]H. E. Hennis, J. P. Easterly, L. R. Collins, and L. R. Thompson, "Esters from Reactions of Alkyl Halides and Salts of Carboxylic Acids. Reactions of Primary Alkyl Chlorides and Sodium Salts of Carboxylic Acids," Ind. Eng. Chem. Prod. Res. Dev., vol. 6, pp. 193-195, 1967.
[24]H.-M. Yang and C.-C. Huang, "Phase-Transfer Catalyzed Benzoylation of 4-Chloro-3-Methylphenol Sodium Salt in Liquid-Liquid System," Chemical Engineering Communications, vol. 194, pp. 1187-1200, 2007.
[25]O. Bologa and I. Crudu, "Cavitation, Tribosystems and Cavitation Tribomodels," The Annals of University “DUNĂREA DE JOS” of GALAŢI FASCICLE VIII, 2002.
[26]C. sickness, "http://www.deafwhale.com/stranded_whale/barotrauma.htm."
[27]K. S. Suslick, "The Chemical Effects Of Ultrasound," Scientific American, vol. 260, pp. 80-86, 1989.
[28]K. Yasui, T. Tuziuti, and Y. Iida, "Dependence of the characteristics of bubbles on types of sonochemical reactors," Ultrason Sonochem, vol. 12, pp. 43-51, Jan 2005.
[29]M.H.Entezari, A.Keshavarzi, and A. A. Shameli, "Phase-transfer catalysis and ultrasonic wave I.Cannizzaro reaction. ," Ultrasonics Sonochemistry, vol. 7, pp. 169-172, 2000.
[30]N. S. Nandurkar, M. J. Bhanushali, S. R. Jagtap, and B. M. Bhanage, "Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst," Ultrason Sonochem, vol. 14, pp. 41-5, Jan 2007.
[31]J. T. Li and X. L. Li, "An efficient and practical synthesis of methylene dioximes by combination of ultrasound and phase transfer catalyst," Ultrason Sonochem, vol. 14, pp. 677-9, Sep 2007.
[32]H. M. Yang and G. Y. Peng, "Ultrasound-assisted third-liquid phase-transfer catalyzed esterification of sodium salicylate in a continuous two-phase-flow reactor," Ultrason Sonochem, vol. 17, pp. 239-45, Jan 2010.
[33]P. Walden, "Molecular weights and electrical conductivity of several fused salts," Bull. Russian Acad. Sci. , pp. 405-422, 1914.
[34]F. H. Hurley and T. P. WIer, "The electrodeposition of aluminum from nonaqueous solutions at room temperature," J. Electrochem. Soc. , vol. 98, pp. 207-212, 1951.
[35]Edward M. Arne t t and J. F. Wolf, "An Electrochemical Scrutiny of Organometallic Iron Complexes and Hexamethylbenzene in a Room Temperature Molten Salt," pp. 3264-3265, 1975.
[36]G. W. Parshall, "Catalysis in Molten Salt Media," Journal of the American Chemical Society, vol. 94, pp. 8716-8719, 1972.
[37]J. Adams Christopher, J. Earle Martyn, G. Roberts , and R. S. Kenneth, "Friedel–Crafts reactions in room temperature ionic liquids”, Chemical Communications," Chemical Communications, pp. 2097-2098, 1998.
[38]M. Badri and J. Brunet, "Ionic liquids as solvents for the regioselective O-alkylation of C/O ambident nucleophiles.," Tetrahedron Letters, vol. 33, pp. 4435-4438, 1992.
[39]P. Wasserscheid and H. .Waffenschmidt, " Ionic liquids in regioselective platinum-catalysed hydroformylation," Journal of Molecular Catalysis A: Chemical, vol. 164, pp. 61-67, 2000.
[40]M. A. Judeh Zaher, Hao-Yu Shen, Ching Chi Bun, Li-Chun Feng , and S. Selvasoth, "A facile and efficient nucleophilic displacement reaction at room temperature in ionic liquids," Tetrahedron Letters, vol. 43, pp. 9381-9384, 2002.
[41]M. Ghiaci, B. Aghabarari, S. Habibollahi, and A. Gil, "Highly efficient Bronsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils," Bioresour Technol, vol. 102, pp. 1200-4, Jan 2011.
[42]F. D’Anna, S. Marullo, P. Vitale, C. Rizzo, P. Lo Meo, and R. Noto, "Ionic liquid binary mixtures: Promising reaction media for carbohydrate conversion into 5-hydroxymethylfurfural," Applied Catalysis A: General, vol. 482, pp. 287-293, 2014.
[43]劉鷹, "離子液體在催化過程中的應用,化學工業出版社," 化學工業出版社, 2008.
[44] 楊峻瑋,超音波及離子液體輔助相間轉移觸媒於三液相系統合成鄰-羥基苯甲酸正辛酯之研究,國立中興大學化工研究所碩士論文,台中市(2013)
[45]洪瑜鴻,超音波輔助相間轉移觸媒在含離子液體的三液相下合成鄰-羥基苯甲酸丁酯之研究,國立中興大學化工研究所碩士論文,台中市(2012) 


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔