跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾為揚
研究生(外文):Wei-Yang Zeng
論文名稱:石墨烯直接電鍍技術之研究與開發
論文名稱(外文):Research and Development of Graphene for Direct Plating Technology
指導教授:竇維平
指導教授(外文):Wei-Ping Dow
口試委員:萬其超姚學麟
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:150
中文關鍵詞:石墨烯矽通孔印刷電路板鎳鎢合金
外文關鍵詞:GrapheneThrough Silicon ViaPrinted Circuit BoardNiW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超薄的石墨烯材料由於它優異的高機械強度、高熱導率、低電阻、尺寸安定性高等性質,近幾年被受注目且廣泛的應用。吾人致力於將氧化石墨烯應用於半導體與印刷電路板製造技術當中,藉由其雙重功能的導電性及阻障特性來縮短矽穿孔3D晶片堆疊以及印刷電路板微米通、盲孔的金屬化製程,本研究主要發展還原氧化石墨烯的全濕製程並應用於電鍍時的導電層,故rGO製程不僅能夠降低成本,更能輕易貫穿高深寬比的孔洞達到塗佈均勻的目的。
在矽穿孔的製作上由於銅與矽的熱膨脹係數差異甚大,經過熱處理後容易面臨銅膨脹而擠壓或破裂的情形,因此,吾人將石墨烯當作導電層以及阻障層應用在高深寬比的矽穿孔並且以濕式電鍍的方式於石墨烯上沉積鎳鎢合金,並且將500℃、4小時鍛燒過後的試片利用元素分析、光學顯微鏡、電子顯微鏡及多功能聚焦離子束顯微鏡進行觀察,證實熱膨脹係數較低的鎳鎢合金包覆具有優良導電性的石墨烯能有效解決半導體製程在熱信賴度上的各種疑慮。
目前使用化學鍍銅當作晶種層的高密度互連印刷電路板經過熱衝擊測試後,會因為化學銅的存在使得電鍍銅與壓合銅之間產生脫墊的疑慮,有鑑於石墨烯之優良的導電性及阻障特性,將能取代傳統製程使用的化學鍍銅,這項全新的想法不但可以解決熱信賴度上的議題更可以提供環保及簡易的操作流程,非常具有潛力成為下一個世代的創新科技。


Recently, graphene has become a high-profile and widely been used material because of its superior mechanical strength, high thermal conductivity, low resistance and dimensional stability. Graphene oxide (GO) was used in the fabrication process of a semiconductor and a printed circuit board (PCB) in this work. Its dual functions of high conductivity and excellent barrier properties after reduction of GO shorten the metallization process of through-silicon via (TSV) for three directional (3D) chip stacking connection and microvia and through-hole of a PCB. In this work, an all-wet process using reduced GO (rGO) as conducting layer of electroplating was developed and carried out. This rGO process not only has a low cost but also more easily achieve uniform rGO coating in a high aspect ratio via or through-hole.
Copper extrusion or rupture in a TSV easily occurred after thermal test, caused by large mismatch of the coefficient of thermal expansion (CTE) between the filled copper and silicon. Herein, rGO is used as a conducting layer and a barrier layer for a high aspect ratio TSV. The filled metal was nickel-tungsten alloys. The TSVs were analyzed using electron spectroscopy for chemical analysis (ESCA), optical microscope (OM), scanning electron microscope (SEM) and focus ion beam (FIB) after thermal test at 500℃ for 4 hours. It was proved that the thermal reliability of the NiW/rGO/TSV has been greatly improved by the low CTE of nickel-tungsten alloy that was surrounded by the rGO layer as an excellent conducting layer.
The reliability of a printed circuit board with high density interconnection after thermal shock still has issue if the seed layer of microvia and through-hole is made by electroless copper deposition, such as microvia pad delamination between the interlayer and filled copper due to a layer of electroless copper existing there. Because rGO has excellent conductivity and barrier property, it can replace the traditional electroless copper plating. The new idea not only can overcome thermal reliability issues but also provide environment-friendly and easy operation process. This innovation process is potential in emerging technology.


目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xi
第1章 緒論 1
第1.1節 前言 1
第1.2節 研究動機 2
第2章 文獻回顧 3
第2.1節 3D晶片堆疊發展 3
第2.2節 矽通孔 6
第2.3節 直接電鍍技術 8
第2.4節 電鍍 10
第2.4.1節 直流電電鍍 10
第2.4.2節 脈衝與反脈衝式電鍍法 11
第2.5節 電鍍添加劑 13
第2.5.1節 無機添加劑 13
第2.5.2節 有機添加劑 14
第2.6節 銅製程技術 19
第2.7節 銅製程缺失 22
第2.8節 阻障層金屬材料 25
第2.9節 鎳-鎢合金之電鍍 29
第2.10節 石墨烯接枝 31
第2.10.1節 化學接枝法 31
第2.10.2節 化學吸附法 34
第2.10.3節 轉移塗佈接枝法 36
第2.11節 石墨烯(Graphene) 37
第2.11.1節 氧化石墨烯(GO)與還原氧化石墨烯(rGO)41
第2.11.2節 氧化石墨烯的還原 43
第2.11.1節 氮摻雜還原法 48
第3章 實驗藥品與裝置、步驟 50
第3.1節 實驗藥品 50
第3.2節 實驗裝置 52
第3.3節 實驗步驟 66
第3.3.1節 合成氧化石墨烯水溶液(GO Solution) 66
第3.3.2節 還原氧化石墨烯接枝 67
第3.3.3節 TSV填孔電鍍 69
第4章 結果與討論 70
第4.1節 氧化石墨烯之鑑定 70
第4.1.1節 UV-Visible光譜 70
第4.1.2節 FTIR光譜 70
第4.1.3節 XRD繞射峰 71
第4.1.4節 ESCA分峰 72
第4.1.5節 TEM 73
第4.1.6節 AFM 73
第4.2節 阻障層(Barrier Layer)測試 75
第4.2.1節 接枝層均勻度與厚度檢測 75
第4.3節 石墨烯對銅阻障能力的縱深分析 83
第4.3.1節 電鍍後縱深分析 83
第4.3.2節 TSV電鍍銅熱信賴度測試 85
第4.4節 TSV鎳鎢合金電鍍 93
第4.4.1節 TSV無銅製程 93
第4.4.2節 TSV鎳鎢合金電鍍熱信賴度測試 93
第4.4.3節 糖精應力消除測試 97
第4.5節 石墨烯導電層高深寬比TSV填孔電鍍 101
第4.5.1節 Cu/rGO/SiO2/Si 高深寬比填孔電鍍 101
第4.5.2節 NiW/rGO/SiO2/Si 高深寬比填孔電鍍 114
第4.5.3節 高深寬比之熱信賴度測試 122
第4.6節 石墨烯導電層應用於印刷電路板 127
第4.6.1節 有機相化學接枝法 127
第4.6.2節 水相化學吸附 133
第4.6.3節 熱衝擊脫墊試驗 135
第5章 結論 140
第6章 未來研究計畫 142
第7章 參考文獻 143



第7章參考文獻
[1]侯俊宇, “應用驅力有限,3D IC,” 新通訊元件雜誌, 2010.
[2]鍾文仁、陳佑任, “IC封裝製程與CAE應用,” 全華科技圖書股份有限公司, 2005.
[3]L. W. Schaper, S. L.Burkett, S. Spesshoefer, G. V. Vangara, Z. Rahman, and S. Polamreddy, “Architectural Implications and Process Development of 3-D VLSI Z-Axis Interconnect Using Through Silicon Vias,” IEEE, vol. 28, pp. 356-366, 2005.
[4]S. L. Burkett, X. Qiao, D. Temple, B. Stoner, and G. McGuire, “Advanced Processing Technique for Though-Wafer Interconnects,” J. Vac. Sci. Technol., vol. 22, no. 1, pp. 248, 2004.
[5]C.-K. L. John H. Lau, Chau-Jie Zhan, Sheng-Tsai Wu, Yu-Lin Chao, Ming-Ji Dai,, H.-C. C. Ra-Min Tain, Jui-Feng Hung, Chun-Hsien Chien, Ren-Shing Cheng,, and Y.-M. C. Yu-Wei Huang, Li-Ling Liao, Wei-Chung Lo, and Ming-Jer Kao, “Through-Silicon Hole Interposers for 3-D IC Integration,” IEEE, pp. 2156-3950, 2014.
[6]T. Semiconductor, “Interconnected Wafer Stack,” Wafer stacking technology, 2003.
[7]R. Beica, P. Siblerud, C. Sharbono, and M. Bernt, “Advanced Metallization for 3D Integration,” Electronics Packaging Technology Conference, vol. 212, pp. 212 - 218, 2008.
[8]P. Garrou, “How Might 3D ICs Come Together,” Semiconductor International, 2008.
[9]陳正雄, “孔壁金屬化,” TPCA, pp. 87-96, 2012.
[10]P. Dixit, L. Xu, J. Miao, J. H. L. Pang, and R. Preisser, “Mechanical and microstructural characterization of high aspect ratio through-wafer electroplated copper interconnects,” Journal of Micromechanics and Microengineering, vol. 17, no. 9, pp. 1749-1757, 2007.
[11]M. Hayase, and K. Otsubo, “Copper Deep Via Filling with Selective Accelerator Deactivation by a Reverse Pulse,” Journal of The Electrochemical Society, vol. 157, no. 12, pp. D628-D632, 2010.
[12]M. H. Roh, J. H. Lee, W. Kim, and J. Pil Jung, “Cu filling of TSV using various current forms for three‐dimensional packaging application,” Soldering & Surface Mount Technology, vol. 25, no. 4, pp. 209-217, 2013.
[13]S. C. Hong, W. G. Lee, W. J. Kim, J. H. Kim, and J. P. Jung, “Reduction of Defects In TSV Filled With Cu by High-Speed 3-Step PPR For 3D Si Chip Stacking,” Microelectronics Reliability, vol. 51, no. 12, pp. 2228-2235, 2011.
[14]L. Xu, P. Dixit, J. Miao, and J. H. L. Pang, “Through-Wafer Electroplated Copper Interconnect With Ultrafine Grains and High Density of Nanotwins,” Appl. Phys. Lett., vol. 90, no. 3, 2007.
[15]陳正雄, “HDI Technology Introduction,” TPCA, pp. 209, 2012.
[16]Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction,” J. Electrochem. Soc, vol. 142, no. 6, pp. L87-L89, 1995.
[17]W.-P. Dow, and C.-W. Liu, “Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method,” Journal of The Electrochemical Society, vol. 153, no. 3, pp. C190-C194, 2006.
[18]W.-P. Dow, M.-Y. Yen, C.-W. Liu, and C.-C. Huang, “Enhancement of filling performance of a copper plating formula at low chloride concentration,” Electrochimica Acta, vol. 53, no. 10, pp. 3610-3619, 2008.
[19]W.-P. Dow, M.-Y. Yen, W.-B. Lin, and S.-W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating,” Journal of The Electrochemical Society, vol. 152, no. 11, pp. C769-C775, 2005.
[20]S. C. Chang, J. M. Shieha, K. C. Lin, and B. T. Dai, “Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers,” J. Vac. Sci. Technol. , vol. 20, pp. c1311, 2002.
[21]N. Zukauskaite, and A. Malinauskas, “Electroctatlysis by a Brightener in Copper Electrodeposition,” Sov. Electrochem., vol. 49, no. 1, pp. 3 - 18, 1989.
[22]J. P. Healy and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartⅡ. The Instability of 4,5-Dithiaoctane-1,8-Disulphonic Acid in the Bath on Open Circuit,” J. Electroanal. Chem, vol. 338, no. 1-2, pp. 167-177, 1992.
[23]E. E. Farndon, F. C. Walsh, and S. A. Campbell, “Effect of Thiourea Benzotriazole and 4,5-Dithiaoctane-1,8-Disulphonic Acid on the Kinetics of Copper Deposition form Dilute Acid Sulphate Solutions,” J. Appl. Electrochem, vol. 25, no. 574, pp. 574-583, 1995.
[24]A. Frank, and A. J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries,” Journal of The Electrochemical Society, vol. 150, no. 4, pp. C244-C250, 2003.
[25]E. Mattsson, and a. J. O. M. Bockris, “Galvanostic Studiew of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System,” Trans. Farady Soc vol. 55, pp. 1586-1601, 1959.
[26]W.-P. Dow, and H.-S. Huang, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition,” Journal of The Electrochemical Society, vol. 152, no. 2, pp. C67-C76, 2005.
[27]H. Xiao, “Introduction of Semiconductor Manufacturing Technology,” Prentice-Hall Inc , New Jersey, vol. PM220, pp. 704, 2001.
[28]P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections,” IBM Journal of Research and Development, vol. 42, no. 5, pp. 567 - 574, 1998.
[29]羅正忠、張鼎張, “半導體製程技術導論,” 台灣培生教育出版股份有限公司, 2009.
[30]S.-K. Ryu, T. Jiang, K. H. Lu, J. Im, H.-Y. Son, K.-Y. Byun, R. Huang, and P. S. Ho, “Characterization of Thermal Stresses in Through-Silicon Vias for Three-Dimensional Interconnects by Bending Beam Technique,” Applied Physics Letters, vol. 100, no. 4, pp. 041901, 2012.
[31]L. Kong, A. C. Rudack, P. Krueger, E. Zschech, S. Arkalgud, and A. C. Diebold, “3D-Interconnect: Visualization of Extrusion and Voids Induced in Copper-Filled Through-Silicon Vias (TSVs) at Various Temperatures Using X-ray Microscopy,” Microelectronic Engineering, vol. 92, pp. 24-28, 2012.
[32]S.-H. Choa, C. G. Song, and H. S. Lee, “Investigation of Durability of TSV Interconnect by Numerical Thermal Fatigue Analysis,” International Journal of Precision Engineering and Manufacturing, vol. 12, no. 4, pp. 589-596, 2011.
[33]E. J. Cheng, and Y. L. Shen, “Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging,” Microelectronics Reliability, vol. 52, no. 3, pp. 534-540, 2012.
[34]K. S. Zeng, Roger; Chiu, Tz-Cheng; Edwards, Darvin; Ano, Kazuaki; Tu, K. N., “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability,” Journal of Applied Physics, vol. 97, no. 2, pp. 024508, 2005.
[35]Nicolet, and M-A.Bartur, “Diffusion Barriers In Layered Contact Structures,” Vacuum Science and Technology, vol. 19, no. 3, pp. 786-793, 1981.
[36]R. Kirschman, “Reliability of High Temperature Metallizations with Amorphous Ternary Diffusion Barriers,” Wiley-IEEE Press, vol. 1, pp. 586 - 591, 1999.
[37]S. C. Sun, H. K. Yap, C. A. Chen, and L. P, “Evaluation of Amorphous (Ta, W, MO)-Si-N Diffusion Barriers Between Cu and Si,” Solid-State and Integrated-Circuit Technology, vol. 1, pp. 397 - 399, 2001.
[38]T. B. Massalski, “Binary Alloy Phase Diagrams,” ASM International, vol. 3, 1990.
[39]C.-S. Shin, Y.-W. Kim, D. Gall, J. E. Greene, and I. Petrov, “Phase Composition and Microstructure of Polycrystalline and Epitaxial TaN Layers Grown on Oxidized Si x (001) and MgO(001) by Reactive Magnetron Sputter Deposition,” Thin Solid Films vol. 402, pp. 172–182, 2002.
[40]S. B. Antonelli, T. L. Allen, D. C. Johnson, and V. M. Dubin, “Crystallization Behavior of Ni–P Alloy Films on Co and Cu Seed Layers,” Journal of The Electrochemical Society, vol. 152, no. 9, pp. J120-J124, 2005.
[41]H. Chung, M. Chang, S. Chu, N.Kumar, K. Goto, N. Maityl, S. Sankaranarayananl, H. Okamura, N. Ohtsuka, and S. Ogawa, “An Ultra-Thin ALD TaN Barrier for High-Performance Cu Interconnects,” Applied Materials, pp. 454 - 456, 2003.
[42]C.-C. Chang, and J.-S. Chen, “Investigation on Interfacial Stability of Copper/Tantalum Nitride/Dielectrics Multilayered System,” 成功大學材料科學及工程學系學位論文, 2006.
[43]Y. Shacham-Diamand, A. Zylberman, N. Petrov, and Y. Sverdlov, “Electroless Co(Mo,P) Films for Cu Interconnect Application,” Microelectronic Engineering vol. 64, pp. 315–320, 2002.
[44]E. Rudnik, and J. Gorgosz, “The influence of maleic acid on the Co–P electroless deposition,” Surface and Coatings Technology, vol. 201, no. 16-17, pp. 6953-6959, 2007.
[45]H. Nakano, T. Itabashi, and H. Akahoshi, “Electroless Deposited Cobalt-Tungsten-Boron Capping Barrier Metal on Damascene Copper Interconnection,” Journal of The Electrochemical Society, vol. 152, no. 3, pp. C163-C166, 2005.
[46]A. Brenner, “Electrodeposition of Alloys,” Vol. I & II, Academic Press, New York, 1963.
[47]S. O. Moussa, M. A. M. Ibrahim, and S. S. A. E. Rehim, “Induced Electrodeposition of Tungsten With Nickel From Acidic Citrate Electrolyte,” Journal of Applied Electrochemistry, vol. 36, no. 3, pp. 333-338, 2005.
[48]Bhattacharjee, P. P.Ray, R. Kumar, Upadhyaya, and Anish, “Nickel Base Substrate Tapes For Coated Superconductor Applications,” Journal of Materials Science, vol. 42, no. 6, pp. 1984-2001, 2007.
[49]G. A. Dosovitskiy, S. V. Samoilenkov, A. R. Kaul, and D. P. Rodionov, “Thermal Expansion of Ni–W, Ni–Cr, and Ni–Cr–W Alloys Between Room Temperature and 800 °C,” International Journal of Thermophysics, vol. 30, no. 6, pp. 1931-1937, 2009.
[50]S. I. Simak, A. V. Ruban, and Y. H. Vekilov, “Thermodynamic, Mechanical and Thermal Properties of NiW Alloys from Harris Functional LMTO-CPA Calculations,” Solid State Communications, vol. 87, no. 5, pp. 393-396, 1993.
[51]M. J. DeSilvaa, and Y.S.Diamand, “A Novel Seed Layer Scheme to Protect Catalytic Surfaces for Elecfroless Deposition,” J. Electrochem. Soc, vol. 143, no. 11, pp. 3512-3516, 1996.
[52]H.-H. Hsu, C.-C. Hsieh, M.-H. Chen, S.-J. Lin, and J.-W. Yeh, “Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition,” Journal of The Electrochemical Society, vol. 148, no. 9, pp. C590-C598, 2001.
[53]B. K. W. Baylis, A. Busuttil, N. E. Hedgecock, and M. Schlesinger, “Tin (IV) Chloride Solution as a Sensitizer in Photoselective Metal Deposition,” J. Electrochem. Soc, vol. 123, no. 3, pp. 348-351, 1976.
[54]W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic Monolayers: I. Films Adsorbed From Solution In Non-Polar Liquids,” J.Colloid Sci., vol. 1, no. 6, pp. 513-538, 1946.
[55]A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” Chem. Rev., vol. 96, pp. 1533-1554, 1996.
[56]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chem. Rev, vol. 105, pp. 1103-1169, 2005.
[57]Y. Lou, G. Liu, S. Liu, J. Shen, and W. Jin, “A Facile Way to Prepare Ceramic-Supported Graphene Oxide Composite Membrane Via Silane-Graft Modification,” Applied Surface Science, vol. 307, pp. 631-637, 2014.
[58]T. Hwang, J. S. Oh, J.-P. Hong, G.-Y. Nam, A.-H. Bae, S.-I. Son, G.-H. Lee, H.-K. Sung, Y. Lee, and J.-D. Nam, “One-step metal electroplating and patterning on a plastic substrate using an electrically-conductive layer of few-layer graphene,” Carbon, vol. 50, no. 2, pp. 612-621, 2012.
[59]C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, vol. 321, no. 18, pp. 385-388, 2008.
[60]洪偉修教授, “世界上最薄的材料-石墨烯(PDF),” 98康熹化學報報 (康熹文化事業股份有限公司), 2009.
[61]S. G. Alexander A. Balandin, Wenzhong Bao,Irene Calizo,, and F. M. Desalegne Teweldebrhan, and Chun Ning Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett, vol. 8, no. 3, pp. 902–907, 2008.
[62]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, vol. 320, no. 6, pp. 1308, 2008.
[63]莊鎮宇, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,” 物理專文, 2011.
[64]S. Park, and R. S. Ruoff, “Chemical Methods for The Production of Graphenes,” Nat Nanotechnol, vol. 4, no. 4, pp. 217-24, Apr, 2009.
[65]K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, “The Chemistry of Graphene,” J. Mater. Chem, vol. 20, pp. 2277–2289 2010.
[66]Z. S. Claire Berger, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,” J. Phys. Chem. B, 108, 19912-19916, vol. 108, no. 52, pp. 19912-19916, 2004.
[67]蘇清源, “石墨烯氧化物之特性與應用前景,” 物理專文, pp. P.163, 2011.
[68]C. Hontoria-Lucas, A. J. López-Peinado, J. d. D. López-González, M. L. Rojas-Cervantes, and R. M. Martín-Aranda, “Study Of Oxygen-Containing Groups In A Series Of Graphite Oxides: Physical And Chemical Characterization,” Carbon, vol. 33, no. 11, pp. 1585-1592, 1995
[69]A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and C. B. Shenoy, “Structural Evolution During The Reduction Of Chemically Derived Graphene Oxide,” Nature Chem, vol. 2, pp. 581-587, 2010.
[70]J. Ito, J. Nakamura, and A. Natori, “Semiconducting Nature of The Oxygen-Adsorbed Graphene Sheet,” Journal of Applied Physics, vol. 103, no. 11, pp. 113712, 2008.
[71]S. Pei, and H.-M. Cheng, “The Reduction of Graphene Oxide,” Carbon, vol. 50, no. 9, pp. 3210-3228, 2012.
[72]C. G. mez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and a. K. Kern, “Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets,” Nano Lett., vol. 7, no. 11, pp. 3499-3503, 2007.
[73]H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J.-Y. Choi, and Y. H. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance,” Advanced Functional Materials, vol. 19, no. 12, pp. 1987-1992, 2009.
[74]M. T. Mariappan Periasamy “Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis,” Journal of Organometallic Chemistry vol. 609, no. 1-2, pp. 137-151, 2000.
[75]S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, “Direct Reduction of Graphene Oxide Films Into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids,” Carbon, vol. 48, no. 15, pp. 4466-4474, 2010.
[76]S. Thakur, and N. Karak, “Alternative methods and nature-based reagents for the reduction of graphene oxide: A review,” Carbon, vol. 94, pp. 224-242, 2015.
[77]S. G. Sergey Dubin, Kan Wang, Vincent C. Tung, Kitty Cha, Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang, and Richard B. Kaner., “A One-Step Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents,” Acs nano, vol. 4, no. 7, pp. 3845–3852, 2010.
[78]Y. Z. S.J. An, S.H. Lee, M.D. Stoller, T. Emilsson, S. Park,, “Thin Film Fabrication and Simultaneous Anodic
Reduction of Deposited Graphene Oxide Platelets by
Electrophoretic Deposition,” American Chemical Society, vol. 1, pp. 1259–1263, 2010.
[79]Yanwu Zhu, Shanthi Murali, Meryl D. Stoller, Aruna Velamakanni, Richard D. Piner, and R. S. Ruoff, “Fabrication of porous SiCy (core)/C (shell) fibres using a hybrid precursor of polycarbosilane and pitch,” Carbon, vol. 48, no. 7, pp. 2115-2118, 2010.
[80]P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel Radiation-Induced Properties of Graphene and Related Materials,” Macromolecular Chemistry and Physics, vol. 213, no. 10-11, pp. 1146-1163, 2012.
[81]P. Kumar, K. S. Subrahmanyam, and C. N. R. Rao, “Graphene Patterning and Lithography Employing Laser/Electron-Beam Reduced Graphene Oxide and Hydrogenated Graphene,” Materials Express, vol. 1, no. 3, pp. 252-256, 2011.
[82]B. Grzyb, S. Gryglewicz, A. ´Sliwak, N. D´ıez, J. Machnikowski, and G. Gryglewicz, “Guanidine, Amitrole and Imidazole as Nitrogen
Dopants for the Synthesis of N-Graphenes,” The Royal Society of Chemistry, vol. 6, pp. 15782–15787, 2016.
[83]S. Sandoval, N. Kumar, J. O.-S. , A. Sundaresan, C.N.R. Rao b, A. Fuertes, and G. Tobias, “Tuning the Nature of Nitrogen Atoms in N-Containing Reduced
Graphene Oxide,” Carbon, vol. 96, pp. 594-602, 2016.
[84]G. E. Hisato Yamaguchi, Cecilia Mattevi,HoKwon Kim,and Manish Chhowalla, “Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films,” ACS NANO, vol. 4, pp. 524–528, 2010.
[85]H.-W. Tien, S.-T. Hsiao, W.-H. Liao, Y.-H. Yu, F.-C. Lin, Y.-S. Wang, S.-M. Li, and C.-C. M. Ma, “Using Self-Assembly to Prepare A Graphene-Silver Nanowire Hybrid Film That Is Transparent and Electrically Conductive,” Carbon, vol. 58, pp. 198-207, 2013.
[86]F. Ren, S. J. Pearton, J. Kim, and H. Y. Kim, “Graphene-bades metal diffusion barrier,” International Patent, WO 2013/096273 A1.
[87]L. Shao, G. Tobias, C. G. Salzmann, B. Ballesteros, S. Y. Hong, A. Crossley, B. G. Davis, and M. L. Green, “Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes,” Chem Commun (Camb), no. 47, pp. 5090-2, Dec 21, 2007.
[88]A. M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C. M. Whelan, and Y. Travaly, “Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers,” Advanced Functional Materials, vol. 20, no. 7, pp. 1125-1131, 2010.
[89]黃馨嫚, “填充矽通孔之新穎電鍍鎳鎢合金配方,” 國立國立中興大學 碩士論文, 2012.
[90]S. K. Soni, B. W. Sheldon, and S. J. Hearne, “Origins of Saccharin-Induced Stress Reduction Based on Observed Fracture Behavior of Electrodeposited Ni Films,” Journal of Materials Science, vol. 49, no. 3, pp. 1399-1407, 2013.
[91]D. Mockutm, and G. Bernotiene, “The Interaction of Additives with the Cathode in a Mixture of Saccharin, 2-Butyne-1,4-Diol and Phthalimide During Nickel Electrodeposition in a Watts-type Electrolyte,” Surface and Coatings Technology, vol. 135, pp. 42-47, 2000.
[92]R. S. Smith, L. E. Godycki, and J. C. Lloyd, “Effects of Saccharin on the Structural and Magnetic Properties of Iron-Nickel Films,” Technical Notes, vol. 108, no. 10, pp. 996-998, 1961.
[93]Z. Wang, H. Wang, P. Cheng, G. Ding, and X. Zhao, “Simultaneous Filling of Through Silicon Vias (TSVs) with Different Aspect Ratios Using Multi-Step Direct Current Density,” Journal of Micromechanics and Microengineering, vol. 24, no. 8, pp. 085013, 2014.
[94]J. Horkans, “On the Role of Buffers and Anions in NiFe Electrodeposition,” J. Electrochem. Sot., vol. 126, no. 11, pp. 1861-1866, 1979.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top