跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱姿萍
研究生(外文):Zi-Ping Qiu
論文名稱:摻雜鉑與聚葡萄胺糖之二氧化鈦光觸媒製備及光催化活性研究
論文名稱(外文):Preparation and Photocatalytic Activity of Titania Photocatalyst Doped with Platinum and Chitosan
指導教授:楊鴻銘楊鴻銘引用關係鄭文桐
指導教授(外文):Hung-Ming YangWen-Tung Cheng
口試委員:王俊欽
口試日期:2016-06-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:144
中文關鍵詞:溶膠凝膠法二氧化鈦聚葡萄胺糖(chitosan)光催化反應
外文關鍵詞:sol-gel methodtitaniaChitosanplatinumphotocatalytic reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討二氧化鈦光觸媒之最佳合成條件,分析不同製備變因對觸媒性質的影響,並探討合成觸媒在不同光反應動力學變因的活性差異。
使用溶膠凝膠法,改變不同段燒溫度、不同溶劑與水量、不同添加劑種類及比例,與不同鉑添加比例來合成觸媒。以染料甲基橙水溶液,在365nm波長光源下進行觸媒光反應活性比較,尋求最佳觸媒合成條件。以不同分析儀器SEM、BET、XRD、TGA及EDS檢視合成觸媒的性質,以合成觸媒中有最佳光催化效果者,進行不同動力學操作變因之光反應測試,包括不同波長光源照光反應、不同甲基橙初濃度、對不同汙染物亞甲基藍的降解,與觸媒回收後的活性效果。
實驗結果為,使用正丙醇為溶劑且與水量莫爾比為1:5時,並添加4 wt% chitosan作為分散劑,經400 度C段燒後,使用光還原法將1wt%鉑負載在觸媒表面上,所得到之Pt(1)(Chitosan(4)TiO2(96))(99)觸媒有最佳光催化活性。適當的溶劑種類及水量可使觸媒顆粒較小且呈現球狀。適量chitosan的添加可使觸媒的比表面積、孔洞體積與平均孔徑變大。當觸媒照光產生電子-電洞對時,鉑可吸引光生電子,使電子-電洞對分離時間延長,因此光反應效果變好。
以甲基橙水溶液,分別經紫外光與可見光照射150 min,進行觸媒的反應活性測試。Pt(1)(Chitosan(4)TiO2(96))(99)觸媒在306nm與365nm波長光源下照射150 min之轉化率分別為95%與96%,顯示在紫外光波段時具有高光催化活性。而以365nm波長光源照射有最佳光反應效果,其轉化率高於商用P25觸媒10%,反應速率常數也為1.6倍。而在相同反應條件下,甲基橙初濃度越小,光反應活性越大。當甲基橙初濃度為30ppm時,反應90 min後,降解率已接近100%。另外Pt(1)(Chitosan(4) TiO2(96))(99)觸媒對亞甲基藍降解率為90%,顯示觸媒對不同汙染物皆具降解效果。經回收後的觸媒於50ppm甲基橙之轉化率約為87%,可看出觸媒的可再使用性。


In this study, the optimal preparation conditions for titania photocatalysts were explored via sol-gel method, and the effects of different preparing parameters on the properties of the catalysts as well as the catalytic activity of the prepared catalysts were analyzed. The preparation conditions included different calcined temperature, kind of solvents , amounts of water and additive, and different amounts of platinum. The catalysts characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X- ray analysis (EDS) and Brunauer–Emmett–Teller. The catalyst with the best activity was used to perform the photoreaction test at various conditions including wavelength of light source, initial concentration of methyl orange, degradation of methylene blue, and catalyst recovery.
Experimental results showed that titania catalyst prepared with 4wt% chitosan as dispersant, using n-propanol as solvent with molar ratio of n-propanol to water by 1:5, calcined at 400 ?C , and loading 1 wt% of platinum by photo-reduction method had the best catalytic activity. A suitable type of solvent and amount of water resulted in the catalyst particles with small size and spherical shape. A suitable addition of chitosan made the specific area, pore volume and average pore size of the catalyst more larger, and the loading of Pt could increase the photocatalytic activity by suppressing the recombination of photo-produced hole/electron pairs.
The aqueous solution of methyl orange dye (MO) was used as a model pollutant to study the photocatalytic activity of as-prepared catalyst sample under UV irradiation. The conversions using Pt(1)(Chitosan(4)TiO2(96))(99) were 95% and 96% in 150 minutes of illumination for 306 nm and 365 nm of UV sources, respectively, exhibiting the high photo-catalytic activity under UV. The catalyst showed a highest activity for degradation of methyl orange under 365 nm UV of illumination with a 10% higher in conversion and 1.6 times faster in rate coefficient than commercial photocatalyst Degussa-P25.
At the same reaction conditions, the smaller the initial concentration of MO, the larger activity of the catalyst behaved. When the initial concentration of MO was at 30 ppm, the degradation ratio approached 100% in 90 min. Moreover, the degradation ratio of methylene blue using Pt(1)(Chitosan(4)TiO2(96))(99) was 90%, showing that the catalyst had the ability to degrade different pollutants. In addition, the conversion of 50 ppm MO using the recovered catalyst was about 87%, revealing the reusability of the catalyst.


目錄
誌謝 I
摘要 II
Abstract IV
目錄 VI
表目錄 X
圖目錄 XIII
符號說明 XVIII
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的與方法 2
1.2.1. 研究目的 2
1.2.2. 研究方法 3
第二章 文獻回顧與基本原理 7
2.1. 二氧化鈦基本性質 7
2.1.1. 二氧化鈦的構造及特性 7
2.1.2. 觸媒之製備方法 9
2.2. 半導體光催化反應原理 16
2.2.1. 量子尺寸效應(Quantum Size Effects) 16
2.2.2. 光催化原理及機制 17
2.2.3. 二氧化鈦光催化之反應 18
2.3. 二氧化鈦光觸媒之改質 19
2.3.1. 摻入過渡金屬 20
2.3.2 金屬原子負載 20
2.3.3. 複合型半導體 21
2.4. 聚葡萄胺糖(Chitosan)簡介 24
2.4.1. 基本性質及結構 24
2.4.2 聚葡萄胺糖的製備 25
2.4.3 聚葡萄胺糖的應用 27
2.5 光觸媒反應文獻回顧 27
第三章 實驗設備與方法 32
3.1. 實驗藥品 32
3.2. 實驗設備 33
3.3. 分析儀器 33
3.3.1. 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 34
3.3.2. X光能量散佈儀(X-ray Energy Dispersive Spectrometer, EDS) 35
3.3.3. X-ray繞射儀(X-ray Diffraction Spectrometer) 35
3.3.4. BET表面積與孔洞分析儀(Brunauer-Emmett-Teller) 37
3.3.5. 紫外-可見光光譜儀(UV-vis Spectrophotometer) 38
3.4. 實驗方法 39
3.5. 觸媒於甲基橙及亞甲基藍光催化反應 41
3.5.1. 觸媒於甲基橙光催化反應之反應機構 41
3.5.2. 觸媒於亞甲基藍光催化反應之反應機構 42
3.5.3. 觸媒於甲基橙及亞甲基藍光催化反應計算 43
3.6. 甲基橙(MO)及亞甲基藍(MB)水溶液檢量線 47
第四章 觸媒活性與特性分析 49
4.1. 前言 49
4.2. 不同煅燒溫度對二氧化鈦光觸媒之影響 53
4.3. 不同水量製備二氧化鈦對光觸媒之影響 64
4.4. 不同溶劑製備二氧化鈦對光觸媒之影響 73
4.5. 不同添加劑對二氧化鈦光觸媒之影響 80
4.6. 不同chitosan比例對二氧化鈦光觸媒之影響 91
4.7. 不同鉑比例負載於Chitosan (4)TiO2 (96)光觸媒之影響 101
4.8. 光觸媒製備變因結論 112
第五章 光催化反應操作條件探討 114
5.1. 前言 114
5.2. 不同波長光源對不同觸媒的甲基橙光催化反應之影響 115
5.3. 不同甲基橙水溶液初濃度對光催化反應之影響 122
5.4. 光降解亞甲基藍水溶液 127
5.5. 觸媒回收 131
5.6. 光反應操作變因結論 135
第六章 總結 136
6.1. 觸媒製備與特性分析 136
6.2. 光催化反應 139
參考文獻 141



[1]http://erdb.epa.gov.tw/DataRepository/PollutionProtection/WasteReduction.aspx
[2]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
[3]T.R. Esch, I. Gadaczek, T.Bredow, Surface structures and thermodynamics of low-index of rutile, brookite and anatase - A comparative DFT study, Appl. Surf. Sci. 288 (2014) 275-287.
[4] M. Pelaez, N.T. Nolan, S.C. Pillai, M. K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O''Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B-Environ. 125 (2012) 331-349.
[5]E.M. Levin, H.F. McMurdie, C.R. Robbins, Phase Diagrams for Ceramists. The American Cermic Society 76 (1975) 4150-4999.
[6]C.J. Brinker, G.W. Scherer, The Physics and Chmistry of Sol-Gel Processing. ACADEMIC PRESS,UK (1990).
[7]湯偉鉦, 蘇一哲, 溶膠-凝膠法製備奈米複合材料, 化學 71 (2012) 39-51.
[8]C.S. Fang, and Y.W. Chen, Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, Mate. Chem. Phys. 78 (2003) 739-745.
[9]K. Tsukuma, T. Akiyama, H. Imai, Liquid phase deposition film of tin oxide, J. Non-Cryst. Solids 210 (1997) 48-54.
[10]鄭玫玲, 金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究, 國立中央大學材料科學與工程研究所碩士論文 (2007).
[11]A.L. Linsebigler, G. Lu, J. T. Yates, Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev 95 (1995) 735-758.
[12]J. Zhang, S. Yan, L. Fu, F. Wang, M. Yuan, G. Luo, Q. Xu, X. Wang, C. Li, Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2, Chi. J. Catal. 32 (2011) 983-991.
[13]C.R. Estrellan, C. Salim, H. Hinode, Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide, J. Hazard. Mater. 179 (2010) 79-83.
[14]Q.H. Zhang, W.D. Han, Y.J. Hong, J.G.Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst, Catal. Today 148 (2009) 335-340.
[15]A. Hagfeldtt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.
[16]N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem.Photobiol. A-Chem. 85 (1995) 247-255.
[17]張煜欣, 含幾丁聚醣吸附劑的製備與特性研究:重金屬移除, 交通大學應用化學系博士論文, (2008).
[18]Z. Zainal, L.K. Hui, M.Z. Hussein, A. H. Abdullah, I.R. Hamadneh,Characterization of TiO2–Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process, Journal of Hazardous Materials 164 (2009) 138-145.
[19]C. E. Zubieta, P.V. Messina , C. Luengo, M. Dennehy, O. Pieroni, P. C. Schulz, Reactive dyes remotion by porous TiO2-chitosan materials, Journal of Hazardous Materials 152 (2008) 765–777.
[20]G. Xiao, H. Su, T. Tan , Synthesis of core–shell bioaffinity chitosan–TiO2 composite and its environmental applications, Journal of Hazardous Materials 283(2015)888-896.
[21]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37.
[22]R.W. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem 91 (1987) 3328-3333.
[23]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269.
[24]M. AL-Shahry, W.B. Ingler Jr., S.U.M. Khan,Efficient Photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243.
[25]L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel, Appl. Catal. B-Environ. 40 (2003) 287-292.
[26]W.G. Zhang , L.L. Zhang , Z.J. Jiang , R.Q. Li, Synthetic route to the nano-sized titania with high photocatalyticactivity using a mixed structure-directing agent, Mater. Chem. Phys. 105 (2007) 414-418.
[27]C.C. Mao, H.S. Weng, Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange, Chem. Eng. J. 155 (2009) 744-749.
[28]W. Sangchay, L. Sikong, K. Kooptarnond, Comparison of photocata-lytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles, Procedia Engineering 32 (2012) 590-596.
[29]H. Yan, S. T. Kochuveedu, L.N. Quan, S.S. Lee, D.H. Kim, Enhanced photocatalytic activity of C, F-codoped TiO2 loaded with AgCl , Journal of Alloys and Compounds 560 (2013) 20–26.
[30] B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatal-yst :Application for degradation of 4-chlorophenol, Journal of Hazardous Materials 252– 253 (2013) 233–-242.
[31] V.H. Nguyen, J.J. Shim, Ionic liquid mediated synthesis of graphene-TiO2 hybrid and its photocatalytic activity, Mater. Sci. Eng., B 180 (2014) 38-45.
[32] L. Wang, Y. Cai, L.Y. Song, W.Y. Niea, Y.F. Zhoua, P. Chen, High efficient photocatalyst of spherical TiO2 particles synthesized by a sol–gel method modified with glycol, Colloids and Surfaces A: Physicochem. Eng. Aspects 461 (2014) 195-201.
[33] T. Preethi, B. Abarna, G.R. Rajarajeswari, Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesized mesoporous nano-titania photocatalyst , Applied Surface Science 317 (2014) 90-97.
[34] J. Du, Z. Wang, G. Zhao, Y. Qian , H. Chen , J. Yang , X. Liu , K. Li, C. He, W. Du, I. Shakir, Facile synthesis and enhanced photocatalytic activity of porous Sn/Nd-codoped TiO2 monoliths, Microporous and Mesoporous Materials 195 (2014) 167-173.
[35] B. Wang, G. Zhang, X. Leng, Z. Sun, S. Zheng, Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts, Journal of Hazardous Materials 284 (2015) 212-220.
[36]I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B-Environ. 49 (2004) 1-14.
[37] A. Nezamzadeh-Ejhieh, S. Hushmandrad, Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst, Appl. Catal. A-Gen. 388 (2010) 149-159.
[38]K.S. Yoo, H. Choi, D.D. Dionysiou, Synthesis of anatase nanostructured TiO2 particles at low temperature using ionic liquid for photocatalysis, Catal. Commun. 6 (2005) 259-262.
[39] Y. Ebina , T. Sasaki , M. Harada, M. Watanabe, Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts, Chem. Mat. 10 (2002) 4390-4395.
[40] R.A. Spurr, W. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760-762.
[41]吳至軒, 氧化鋅擔持於奈米碳管之觸媒製備及其光催化活性之研究, 國立國立中興大學化學工程學系碩士論文, (2012).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top