跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江盈甄
研究生(外文):Ying-Chen Chiang
論文名稱:有機奈米粒的構築、光學變異性以及細胞成像
論文名稱(外文):Construction, optical diversity and cellular imaging of fluorescent organic nanoparticle
指導教授:陳志銘陳志銘引用關係
口試委員:張健忠謝文俊
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:史托伯法螢光有機奈米粒聚集誘導螢光增強柵欄效應金屬表面電漿共振金屬增強螢光雙螢光增強
外文關鍵詞:Stöber methodFONsAIEECage effectSPRMEFDEE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當有機分子聚集形成奈米結構時,分子因為聚集誘導螢光增強(Aggregation-Induced Emission Enhancement, AIEE) 效應而發光;這樣的聚集結構稱為螢光有機奈米粒(Fluorescent organic nanoparticles, FONs)。FONs現象的研究與應用日漸廣泛與重要,但均限於實驗觀測發現。
本論文第一部分主要目的為製備FONs並在適當條件下利用史托伯法(Stöber method)來包覆FONs並生產出螢光奈米粒FON@OH,進而構築成一可應用之螢光奈米粒。此外,包覆過程若添加矽氧-長碳烷鏈,使每個分子在有所區隔的情況下螢光發生藍位移而產生其他不同螢光顏色的螢光奈米粒Dye(Si)x@OH。我們可以藉由長碳烷鏈摻雜的比例(x)探討AIEE與柵欄效應(Cage effect)之間的轉換對具有扭轉分子內電荷轉移(Twisted Intramolecular Charge Transfer, TICT)特性的分子所造成的抑制關係並製作出不同顏色的固體螢光奈米粒。實驗最後將所得的Dye(Si)x@OH加以表面修飾並嘗試餵養細胞以評估此類奈米粒作為生物標記(biomarker)的可行性。相對於AIEE,論文第二部分引入另一個螢光增強的平台,金屬增強螢光(Metal-enhanced fluorescent, MEF)是經由金屬表面電漿共振(Surface plasmon resonance, SPR)所造成分子螢光增強的現象。論文中我們也利用FONs與自製的銀奈米結構成功的建立出一雙螢光增強(double emission enhancement, DEE)的新平台。研究發現此結合AIEE與MEF雙重增強效應的平台不只螢光雙重增強,亦同時延長了螢光生命期與增加光穩定性。上述兩個平台均成功的增強螢光,並依照不同的實驗方法而發現其他的應用價值。


The organic molecules can self-assemble to form fluorescent organic nanoparticles (FONs), based on the aggregation-induced emission enhancement (AIEE) property, which have recently received a considerable amount of attention. Since FONs cannot be collected by experimental process, only can be observed by use of spectrometers or microscopies, there are many limitations about its application.
The first part of this thesis, the traditional approach Stöber method will be modified based on the fluorescence enhancement platforms FONs to produce innovative dye-doped silica nanoparticles FONs@OH which are expected to function in a wide variety of applications. In addition, the C18-Si (Octadecyltrimethoxysilane) was incorporated to the FONs@OH before shell-coating procedure to construct another dye/C18-doped silica nanoparticles Dye(Si)x@OH. The different ratios in dye/C18, switching between AIEE and cage effect, will result in tunable emission nanoparticles. It means that the twisted intramolecular charge transfer (TICT) of molecules will be inhibited with varying degree of constrains. Eventually, these innovative nanoparticles were surface-modified furtherly to fit the cellular permeability and were incubated into the cells to evaluate the potential application of biomarker.
The second part of this thesis we focus on the metal-enhanced fluorescent (MEF) effect of the FONs on silver nanowire (AgNw) structure. Nanoscale of metals exhibit remarkable optical properties due to excitation of their surface plasma resonance (SPR) by incident light, resulting in significant enhancement of the electromagnetic field at the nanostructure surface. We successfully constructed a double emission enhancement (DEE) platform using a combination of AIEE and MEF models. By the study, this interaction between FONs and silver nanowire is promoting the systemic fluorescence enhancement, lifetime and photostability. Both platforms successfully enhanced fluorescence, and according to different experiments to discover the other application value.


摘要 i
目錄 iii
1. 介紹與文獻探討 1
1.1. 扭曲分子內電荷轉移(Twist Intramolecular Charge Transfer, TICT) 1
1.2. 螢光有機奈米粒(Fluorescent organic nanoparticles, FONs) 2
1.3. 螢光有機奈米粒(Fluorescent organic nanoparticles, FONs)的應用 3
1.4. 內含染料的發光二氧化矽奈米粒(dye-doped silica nanoparticles, DDSN) 3
1.5. 金屬增強螢光(Metal-enhanced fluorescence, MEF) 6
1.6. 銀奈米線的製程 7
1.7. 研究目的與流程 8
2. 實驗方法與步驟 10
2.1. 實驗材料與藥品 10
2.2. 儀器設備 10
2.2.1. 紫外光-可見光吸收光譜儀(UV-Vis Spectrometer, UV-vis) 10
2.2.2. 螢光光譜儀(Fluorescence Spectrometer, PL) 10
2.2.3. 核磁共振光譜儀(Nuclear Magnet Resonance Spectrometer, NMR) 11
2.2.4. 螢光顯微鏡 11
2.2.5. 場發射型掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, SEM) 11
2.2.6. 場發射型掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, SEM) 11
2.3. 細胞實驗方法 12
2.4. 合成與製備 12
2.4.1. 銀奈米粒合成步驟 12
2.4.2. 銀奈米線合成步驟 12
2.4.3. 化合物合成步驟及方法如Scheme 1所示 13
2.4.4. 二氧化矽奈米粒(一元系統) Si@OH 15
2.4.5. 發光二氧化矽奈米粒(二元系統) FON@OH 15
2.4.6. 發光二氧化矽奈米粒(三元系統) Dye(Si)x@OH 16
2.4.7. 發光二氧化矽奈米粒的表面改質(三元系統) Dye(Si)X@NH2 16
2.5. FONs與金屬奈米結構的表面電漿共振實驗方法 17
3. 結果與討論 18
3.1. 螢光有機奈米粒(FONs)的光學性質探討 18
3.2. 螢光有機奈米粒的包覆與光學性質探討 24
3.2.1. 螢光二氧化矽奈米粒的物化性測試(二元系統) FONs@OH 24
3.3. 內含染料的二氧化矽奈米粒(dye-doped silica nanoparticles, DDSNs) Dye(Si)x@OH 29
3.4. FONs@OH奈米粒的表面改質成FONs@NH2 40
3.5. FONs@NH2奈米粒的生物應用與成像 44
3.6. FONs與金屬奈米結構的表面等離子體共振機制 46
3.7. 銀奈米線最佳條件的探討 46
3.8. 化合物與金屬奈米結構混合後的最佳濃度比例探討 46
3.9. 雙螢光增強的機制探討 47
3.10. 雙螢光增強的光穩定性與生命期(lifetime)探討 47
4. 結論 60
5. 未來工作 61
6. 參考文獻 62




[1]E. Lippert, W. Lueder, H. Boos, Bologna, Oxford: Pergamon Press, 1962, 43.
[2]M. Mao, M. G. Ren, and Q. H. Song, Chem. Eur. J. 2012, 18, 15512–15522.
[3]T. Debnath, P. Maity, H. Lobo, B. Singh, G. S. Shankarling and H. N. Ghosh, Chem. Eur. J., 2014, 20, 3510–3519.
[4]D. Horn, and J. Rieger and Use, Chem. Int. Ed., 2001, 40, 4330-4361.
[5]H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, Size-Dependent Colors and Luminescences of Organic Microcrystals, Jpn. J. Appl. Phys., 1996, 35, 221-223.
[6]H. Kasai, H. Kamatani, Y. Yoshikawa, S. Okada, H.Oikawa, A. Watanabe, O. Itoh, and H. Nakanishi, Chem. Lett., 1997, 11, 1181-1182.
[7]B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem. Soc., 2002, 124, 14410–14415.
[8]J. C. González, R. M. Paniago, W. N. Rodrigues, A. Malachias, M. V. B. Moreira, A. G. de Oliveira, I. Mazzaro, C. Cusatis, T. H. Metzger, and J. Peisl, Appl. Phys. Lett., 2001, 78, 1056-1061.
[9]J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, Chem. Commun., 2001, 1740-1741.
[10]M. M. de Souza, G. Rumbles, I. R. Gould, H. Amer, I. D. W. Samuel, S. C. Moratti, and A. B. Holmes, Synth. Met., 2000, 111–112, 539–543.
[11]I. Fischer, K. P. Milroy, Y. L. Dorland, A. P. H. J. Schenning and L. Brunsveld, Chem. Eur. J., 2013, 19, 16646 –16650.
[12]K. Mohit, and G. J. Subi, Nanoscale, 2011, 3, 2130–2133.
[13]S. Y. Su, H. H. Linb, and C. C. Chang, J. Mater. Chem., 2010, 20, 8653–8658.
[14]M. C. Hsieh, C. H. Chien, C. C. Chang and T. C. Chang, J. Mater. Chem., 2013, 1, 2350-2357.
[15]Y. T. Tung, C. C. Chang, Y.L. Lin, S. L. Hsieh, and G. J. Wang, Biosens Bioelectron., 2015, 0956-5663.
[16]M. Helle, E. Rampazzo, M. Monchanin, F. Marchal,F. Guillemin, S. Bonacchi, F. Salis, L. Prodi and L. Bezdetnaya, ACS Nano, 2013, 7, 8645–8657.
[17]R. Kumar, I. Roy, T. Y. Ohulchanskyy, L. N. Goswami,A. C. Bonoiu, E. J. Bergey, K. M. Tramposch, A. Maitra and P. N. Prasad, ACS Nano, 2008, 2, 449–456.
[18]S. Kaur, G. Venktaraman, M. Jain, S. Senapati, P. K. Garg and S. K. Batra, Cancer Lett., 2012, 315, 97–111.
[19]V-R. María, ISRN Materials Science, 2012, 2012, 1.
[20]W. Arap, R. Pasqualini, M. Montalti, L. Petrizza, L. Prodi,E. Rampazzo, N. Zaccheroni and S. Marchio, Curr. Med.Chem., 2013, 20, 2195–2211.
[21]J. H. Ryu, H. Koo, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim and I. C. Kwon, Adv. Drug Delivery Rev., 2012, 64, 1447–1458.
[22]B. Cohen, C. Martin, S. K. Iyer, U. Wiesner and A. Douhal, Chem. Mater., 2012, 24, 361-372.
[23]L. L. Hench and J. K. West, Chem. Rev., 1990, 90, 33–72.
[24]W. Stöber, A. Fink and E. Bohn, J Colloid. Interface Sci., 1968, 26, 62-69.
[25]S. Zanarini, E. Rampazzo, L. D. Ciana, M. Marcaccio,E. Marzocchi, M. Montalti, F. Paolucci and L. Prodi, J. Am. Chem. Soc., 2009, 131, 2260–2267.
[26]R. P. Bagwe, C. Yang, L. R. Hilliard and W. Tan, Langmuir, 2004, 20, 8336–8342.
[27]S. Zanarini, E. Rampazzo, S. Bonacchi, R. Juris,M. Marcaccio, M. Montalti, F. Paolucci and L. Prodi, J. Am. Chem. Soc., 2009, 131, 14208–14209.
[28]K. T. Yong, I. Roy, M. T. Swihart and P. N. Prasad, J. Mater.Chem., 2009, 19, 4655–4672.
[29]R. K. Sharma, S. Sharma, S. Dutta, R. Zboril and M. B. Gawande, Green Chem., 2015, 17, 3207-3230.
[30]K. L. K, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 2003, 107, 668–677.
[31]K. Aslan, S. N. Malyn and C. D. Geddes, J. Fluoresc., 2007, 17, 7–13.
[32]C. D. Geddes and John Wiley, Sons. Inc., Ch10, 10-2.
[33]E. Hao Schatz, J. Chem. Phys., 2004 , 120, 357 – 66.
[34]E. Hao and G. C. Schatz, J. Chem. Phys., 2004, 120, 357-66.
[35]Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2002, 2, 165.
[36]S. Ye , A. R. Rathmell , Z. Chen, I. E. Stewart, and B. J. Wiley, Adv. Mater., 2014, 10, 1002.
[37]N. V. Nghia, N. N. K. Truong, N. M. Thong, N. P. Hung, J. Mater. Chem., 2012, 2, pp. 75–78.
[38]B. Wiley, Y. Sun, and Y. Xia, Langumuir., 2005, 14, 8077.
[39]J. Ma and M. Zhan, RSC Adv., 2014, 4, 21060–21071.
[40]X. Zhang, X. Zhang, B. Yang, L. Liu, J. Hui, M. Liu, Y. Chen and Y. Wei, RSC Adv., 2014, 4, 10060-0066.
[41]L. Liu, K. Luo, J. Chem. Phys., 2014, 10, 1063.
[42]D. Niu, Y. Li, X. Qiao, L. Li, W. Zhao, H. Chen, Q. Zhao, Z. Ma and J. Shi, Chem. Commun., 2008, 10, 4463-4465.
[43]A. Jain, G. A. Harias and F. F. Castillon, Nanotechnology, 2016, 10, 0957-4484.
[44]T. S. Hsieh, J. Y. Wu and C. C. Chang, Dyes. Pigments, 2015, 112, 34-41.
[45]G. W. Bryant, F. J. G. de Abajo and J. Aizpurua, Nano Lett, 2008, 8, 631–636.
[46]M. Swierczewska, S. Lee and X. Chen, Phys. Chem. Chem. Phys., 2011, 13, 9929–9941.
[47]D. Kowalska, B, Krajnik, M, Olejnik, M, Twardowska, N, Czechowski, E, Hofmann and S, Mackowski1, The ScientificWorld Journal, 2013, Volume 2013, Article ID 670412, 12.
[48]Y. Sun, B. Gates, B. Mayers and Y. Xia, Nano Lett., 2002, 2, 165-168.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top