(3.236.214.19) 您好!臺灣時間:2021/05/07 11:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴冠佳
研究生(外文):Guan-Jia Lai
論文名稱:高爐主流道檔板附近流力與鐵水出口鐵渣分離效率之數值模擬
論文名稱(外文):Simulation Analysis on Fluid Mechanics around Skimmer and Separation Efficiency of Iron Dam in the Blast Furnace Main Trough
指導教授:鄭文桐
口試委員:張厚謙潘建男
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:99
中文關鍵詞:數值模擬計算流體力學體積分率法高爐主流道鐵渣分離壁面剪切應力
外文關鍵詞:Numerical analysisComputational fluid dynamicsVOFMain trough of blast furnaceSeparation efficiency of iron and slagShear stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋼鐵產業是經濟發展的根本,現今除了提升產能外,如何在具有競爭力的價格中生產出高品質的鋼材相當重要。然而,高爐主流道會受到鐵水與爐渣的侵蝕,其具有高額的修繕成本,因此對於高爐主流道中的流力與鐵渣分離的探討是必須的。本文使用計算流體力學模擬高爐主流道內空氣、鐵水與爐渣瞬態的流動變化,探討不同流道底部形狀、檔板開口、總質量流率及鐵渣比對於流場變化以及鐵水出口(Iron Dam)的鐵渣分離的影響。本研究沒有考慮熱傳現象及流動為紊流,並使用有限體積法與多相流模型體積分率法(Volume of Fluid Model, VOF)模擬空氣、爐渣及鐵水三相流體於高爐主流道內速度分佈,以獲得剪切應力分佈及藉由相間界面形態以估算鐵水出口處之鐵渣分離效率。分別經由兩相(鐵水與空氣)系統及三相系統(鐵水、爐渣及空氣)之數值模擬分析,本研究獲得重要結果如下:
(1)兩相系統
主流道緩衝區的最大壁面剪切應力發生在鐵水出口前端,並發現流道為鈍角底部的流場會產生較大迴流現象,故其最大壁面剪切應力比弧形底部的流道大25.58 %。
(2)三相系統
a.當有爐渣從鐵水出口流出時,會造成檔板後方的壁面剪切應力增加,且爐渣損失越多,則剪切應力越大,當爐渣損失率上升3.06%,檔板後方的壁面剪切應力則增加1.79%。
b.在鐵渣比為1:9及出鐵口的總質量流率為15 ton/min情況下,檔板開口從0.3 m增加至0.4 m,於鐵水出口前端最大壁面剪切應力上升65.89%,此為檔板後的流量增加所導致。
c.固定鐵渣比為1:6及檔板開口為0.4m時,出鐵口的總質量流率從5.5 ton/min增加至15 ton/min,於鐵水出口前端壁面剪切應力最大值增加45.74%,此因滯留時間短而使得於相同流道內的流速變快所致。
d.當檔板開口由0.4 m降到0.3 m,在出鐵口總質量流率15 ton/min鐵渣比為1:9時,本文發現爐渣損失率從3.06%變為0%,此結果是由於檔板開口降低,鐵水與爐渣的界面高於檔板底部,而造成爐渣無法從鐵水出口流出。
e.高爐出鐵時總質量流率從5.5 ton/min增加至15 ton/min,在檔板開口為0.4 m及爐渣比為1:6情況下,爐渣損失率上升1.63%,此因總質量流率增加使得鐵水與爐渣於高爐主流道內的滯留時間縮短所致。
f.當鐵渣比由1:1增加到1:9且檔板開口為0.4m及出鐵口總質量流率5.5 ton/min時,則爐渣損失率上升1.53%,此因進入高爐主流道內的爐渣比例增加時,使得鐵水上層的爐渣變厚及鐵水與爐渣的界面降低,導致爐渣容易從檔板底部流向鐵水出口。


Iron and steel industry is the fundamentals of economic development. Aside from pursuing higher productivity, it is also important know how to produce higher quality steel at the competitive price. However, the blast furnace main trough is worn by molten iron and slag, which has expensive repairs. It’s essential to investigate fluid mechanics and separation in blast furnace main trough. Therefore, in the present work a computational fluid dynamics model has been developed to study the transient flow behavior of air, liquid iron and slag in the blast furnace main trough. We investigate the effects of bottom shape of the blast furnace runner, the height of the opening under the skimmer, the total mass flow rate and the ratio of iron to slag on the flow patterns and separation efficiency at iron dam. In addition, the mathematical model is isothermal and turbulent flow to simulate velocity distribution by utilizing the finite volume method and multiple-phase fluid model (VOF method), respectively, followed by calculating shear stress on the wall of trough and mass flow rate to estimate the separation efficiency of iron and slag at the iron dam. The significant results of this study were summary as follows:
(1)Two phase system(iron and air)
In the buffer zone of blast furnace trough, the maximum shear stress is occurred in the front of iron dam, which the maximum shear stress of obtuse runner is over that of arc-shaped runner for 25.58% because the recirculation in obtuse runner is more than arc-shaped runner.
(2)Three phase system(iron, air and slag)
a.The shear stress around skimmer of blast furnace trough will raise due to slag loss (slags fall into the iron dam through the bottom of skimmer). The more slag loss in iron dam will cause the higher velocity and the greater shear stress. As slag loss percentage was increased from 0% to 3.06%, the shear stress behind skimmer would be raised by 1.79%.
b.When the ratio of iron to slag was set by 1:9, the total mass flow rate was fixed as 15 ton/min from taphole, and the height of the opening under the skimmer was increased from 0.3m to 0.4m, the maximum shear stress in the front of iron dam was raised by 65.89%.
c.As the total mass flow rate was changed from 5.5 ton/min to 15 ton/min, the maximum shear stress in the front of iron dam was increased by 45.74%, resulting from that higher velocity owing to reducing the residence time.
d.When the height of the opening under the skimmer was changed from 0.4m to 0.3m, the slag loss percentage was decreased from 3.06% to 0% due to the fact that the interface between iron and slag is lower than the bottom of skimmer.
e.The slag loss percentage would be raised by 1.63% when the total mass flow rate was changed from 5.5 ton/min to 15 ton/min for reducing the residence time.
f.With adding the amount of slag in trough, the interface between iron and slag is lower than the bottom of skimmer. As the ratio of iron to slag at taphole was enhanced, the slag loss percentage will be increased from 0% to 1.58%.


摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
1-3 研究方法 4
1-4 本文架構 5
第二章 文獻回顧 6
2-1 流體力學 6
2-1-1 流體的連續介質模型 6
2-1-2 流體的慣性 6
2-1-3 流體的壓縮性 7
2-1-4 流體的膨脹性 7
2-1-5 流體的黏性 7
2-1-6 層流與紊流 8
2-1-7 有旋流動與無旋流動 9
2-1-8 質量守恆方程式 9
2-1-9 動量守恆方程式 10
2-2 紊流模型 12
2-3 離散方法概論 13
2-3-1 離散化的目的 13
2-3-2 離散時所使用的網格 14
2-3-3 有限體積法 14
2-3-3-1 有限體積法基本思想 14
2-3-3-2 有限體積法使用的網格 15
2-3-3-3 有限體積法離散格式 17
2-4 壓力修正法 17
2-4-1 SIMPLE法 17
2-4-2 SIMPLER法 18
2-4-3 SIMPLEC法 18
2-4-4 PISO法 18
2-5 多相流系統-VOF模型 19
2-6 高爐主流道 21
2-6-1 鐵渣分離效果 21
2-6-2 流力 23
2-6-3 高爐出鐵口 27
第三章 研究方法 30
3-1 物理模型 30
3-2 數學模式 32
3-2-1 基本假設 32
3-2-2 守恆方程式 33
3-3 邊界條件 36
3-4 初始條件 36
3-5 數值方法 38
3-6 數值計算 41
3-7 敏感度分析 43
第四章 結果與討論 45
4-1 計算模式驗證 45
4-1-1 網格敏感度測試 45
4-1-2 理論與現場數據驗證 46
4-2 兩相系統變因討論 51
4-3 三相系統變因討論 62
4-3-1 鐵渣分離效果之敏感度分析 62
4-3-1-1 檔板開口 62
4-3-1-2 總質量流率 65
4-3-1-3 鐵渣比 67
4-3-2 流力之敏感度分析 70
4-3-2-1 檔板開口 70
4-3-2-2 總質量流率 80
4-3-2-3 鐵渣比 86
第五章 結論與未來方向 92
5-1 結論 92
5-2 未來工作 93
參考文獻 94

[1]M. Naito, K. Takeda, Y. Matsui, “Ironmaking Technology for the Last 100 Years: Deployment to Advanced Technologies from Introduction of Technological Know-how, and Evolution to Next-generation Process”, The Iron and Steel Institute of Japan (ISIJ) International, 55, pp.7-35, 2015
[2]R. Dippenaar, “Industrial Uses of Slag (The Use and Re-Use of Iron and Steelmaking Slags)”, Ironmaking and Steelmaking, 32, pp.35-46, 2005
[3]D. M. Proctor, K. A. Fehling, E. C. Shay, J. L. Wittenborn, J. J. Green, C. Avent, R. D. Bigham, M. Connolly, B. Lee, T. O. Shepker, M. A. Zak, “Physical and Chemical Characteristic of Blast Furnace, Basic Oxygen Furnace, and Electric Arc Furnace Steel Industry Slags”, Environmental Science & Technology, 34, pp.1576-1582, 2000
[4]S. Y. Kitamura, K. Yonezawa, Y. Ogawa, N. Sasaki, “Improvement of Reaction Efficiency in Hot Metal Dephosphorisation”, Ironmaking and Steelmaking, 29, pp.121-124, 2002
[5]T. N. Verma, B. N. Ghosh, B. Rao, K. S. Swaminathan, “Development of Carbonaceous Lining Material from Blast Furnace Trough and Runner”, Transactions of The Indian Ceramic Society, 34, pp.79-86, 1975
[6]H. Pouraria, J. K. Seo, J. K. Paik, “Numerical Modelling of Two-Phase Oil-Water Flow Patterns in a Subsea Pipeline”, Ocean Engineering, 115, pp.135-148, 2016
[7]W. C. Chen, W. T. Cheng, “Numerical Simulation on Forced Convective Heat Transfer of Titanium Dioxide/Water Nanofluid in the Cooling Stave of Blast Furnace”, International Communications in Heat and Mass Transfer, 71, pp.208-215, 2016
[8]H. Hu, Y. F. Cheng, “Modeling by Computational Fluid Dynamics Simulation of Pipeline Corrosion in CO2-Containing Oil-Water Two Phase Flow”, Journal of Petroleum Science and Engineering, 146, pp.134-141, 2016
[9]M. Warzecha, “Numerical and Physical Modelling of Steel Flow in a One-Strand Continous Casting Tundish”, Journal Metalurgija Zagreb, 50, pp.147-150, 2011
[10]N. Kochi, Y. Ueda, T. Uemura, T. Ishii, M. Iguchi, “Numerical Simulation on Penetration Stage of a Rising Bubble through an Oil/Water Interface”, The Iron and Steel Institute of Japan (ISIJ) International, 51, pp.1011-1013, 2011
[11]A. Kumar, S. K. Ajmani, A. R. Pal, “Optimal Configuration of Blast Furnace Slag Runner to Reduce Fluid Flow Stress at Wall Using Mathematical Modelling”, Ironmaking and Steelmaking, 37, pp.9-14, 2010
[12]謝龍漢和趙新宇, ANSYS CFX流體分析及仿真, 電子工業出版社, 北京, 2013
[13]張惠和康士廷, FLUENT 14 流場分析自學手冊, 人民郵電出版社, 北京, 2014
[14]江帆和黃鵬, Fluent 高級應用與實例分析, 清華大學出版社, 北京, 2010
[15]王福軍, 計算流體動力學分析, 清華大學出版社, 北京, 2004
[16]吳光中、宋婷婷和張毅, Fluent 基礎入門與案例精通, 電子工業出版社, 北京, 2012
[17]H.K. Versteeg, W. Malalasekera, “An Introduction to Computational Fluid Dynamics: The Finite Volume Method”, New York, 1995.
[18]H. Schlichting, “Boundary Layer Theory”, 8th ed. McGrawHill, New York, 1979.
[19]周俊波和劉洋, Fluent 6.3 流場分析從入門到精通, 機械工業出版社, 北京, 2012
[20]I. B. Celik, “Introductory Turbulence Modeling”, Western Virginia University ,1999
[21]溫正, Fluent 流體計算應用教程(第二版), 清華大學出版社, 北京, 2013
[22]S.V. Patanker, D.B. Spalding, “A Calculation Processure for Heat, Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, 15, pp.1787-1806, 1972.
[23]S. V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Washington, 1980
[24]J.P. Van Doormal, G.G Raithby, “Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, 7, pp.147-163, 1984.
[25]R.I. Issa, “Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting”, Journal of Computational Physics, 62, pp.40-65, 1986.
[26]C. W. Hirt, B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, Journal of Computational Physics, 39, pp.201-225, 1981
[27]P. Sukasalmi, A. Kärnä, T. Fabritius, J. Savolainen, “CFD Model Emulsification of Slag into the steel”, The Iron and Steel Institute of Japan (ISIJ) International, 49, pp.1661-1667, 2009
[28]K. Zheng, Z. Wen, X. Liu, Y. Ren, W. Wu, H. Qiu, “Research Status and Development Trend of Numerical Simulation on Blast Furnace Lining Erosion”, The Iron and Steel Institute of Japan (ISIJ) International, 49, pp.1277-1282, 2009
[29]Z. Zhao, B. Shi, “Numerical Simulation of Oil-Water Separation Process in Disc Separator”, International Conference on Remote Sensing, Environment and Transportation Engineering, pp.8369-8372, 2011
[30]M. Dinc, D. D. Gray, “Drop Impact on a Wet Surface: Computation Investigation on Gravity and Drop Shape”, Advances in Fluid Mechanics and Heat & Mass Transfer, pp.374-379, 2012
[31]Y. Xu, J. Yuan, J. U. Repke, G. Wozny, “CFD Study on Liquid Flow Behavior on Inclined Flat Plate Focusing on Effect of Flow Rate”, Engineering Application of Computational Fluid Mechanics, 6, pp.186-194, 2012
[32]S. Chatterjee, K. Chattopadhyay, “Formation of Slag ‘Eye’ in an Inert Gas Shrouded Tundish”, The Iron and Steel Institute of Japan (ISIJ) International, 55, pp.1416-1424, 2015
[33]M. Auyb, M. Sohaib, M. Rafique, M. A. Khan, “Computation Modeling of Gas Liquid Interface Using Different Multiphase Models”, European Conference on Computational Fluid Dynamics, 2006
[34]G. A. Volovik, I. I. Dyshlevich, V. I. Kotov, B. F. Marder, P. G. Kalashnyuk, V. V. Taranovskii, L. V. Fomenko, “Reducing Pig Iron Losses at Tapping Through Design and Processing Improvements”, Translated from Metallurg, 3, pp.9-10, 1981
[35]V. T. Lobachev, I. I. Shestopalov, V. M. Minaev, G. M. Vertsman, Y. V. Anishchenko, “Improving The Efficiency of Slag and Pig Iron Separation in The Main Trough of a Blast Furnace”, Translated from Metallurg, 7, pp.20-21, 1984
[36]I. I. Shestopalov, V. V. Mosiashvili, V. V. Parastashvili, D. N. Gobedzhishvili, V. I. Varava, G. A. Bitsadze, R. M. Gvaramiya, G. M. Vertsman, G. I. Kopadze, M. G. Shatirishvili, “Reduction in The Loss of Pig Iron with Blast-Furnace Slags”, Translated from Metallurg, 12, pp.25-26, 1986
[37]I. I. Shestopalov, A. V. Denisov, P. N. Melnikov, V. S. Makarov, L. B. Unigovskii, V. G. Shulman, V. N. Prokhorov, G. M. Vertsman, I. A. Tsera, “Improving The Separation of Smelting Products in The Main Trough of a Blast Furnace”, Translated from Metallurg, 6, pp.32-33, 1988
[38]H. Kim, B. Ozturk, R. J. Fruehan, “Slag-Metal Separation in The Blast Furnace Trough”, The Iron and Steel Institute of Japan (ISIJ) International, 38, pp.430-439, 1998
[39]I. N. Chakraborty, S. Bose, A. Mukherjee, D. K. Singh, “Optimisation of Blast Furnace Trough Ling Refractory Performance”, Tehran International Conference on Refractories, pp.250-259, 2004
[40]S. K. Dash, S. K. Ajmani, “A Fluid Dynamic Analysis of The Blast Furnace Trough at Tata Steel”, Proceedings of the National Seminar on Computer Applications in Materials & Metallurgical Engineering, pp.26-36, 1996
[41]O. He, G. Evans, P. Zulli, F. Tanzil, “Flow Characteristics in a Blast Furnace Trough”, The Iron and Steel Institute of Japan (ISIJ) International, 42, pp.844-851, 2002
[42]R. V. P. Rezende, A. F. C. Silva, C. R. Maliska, “The Blast Furnace Trough Two-Phase Flow and Its Influence in the Refractory Lining Wear: Mathematical Modeling and Numerical Simulation”, 19th International Congress of Mechanical Engineering, 2007
[43]R. V. P. Rezende, A. F. C. Silva, C. R. Maliska, “Mathematical Modelling and Numerical Simulation of the Multiphase Flow in The Main Trough of a Blast Furnace”, ESSS South American ANSYS Users Conference, 2009
[44]K. Mukai, “Marangoni Flows and Corrosion of Refractory Walls”, Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering, 356, pp.1015-1026, 1998
[45]Z. Han, L. Holappa, “Characteristics of Iron Entrainment into Slag Due to Rising Gas Bubbles”, The Iron and Steel Institute of Japan (ISIJ) International, 43, pp.1698-1704, 2003
[46]H. Sun, K. Nakashima, K. Mori, “Influence of Slag Composition on Slag-Iron Interfacial Tension”, The Iron and Steel Institute of Japan (ISIJ) International, 46, pp.407-412, 2006
[47]H. Upadhyay, T. K. Kundu, “Drain Rate and Liquid Level Simulation in Blast Furnace Hearth Using Plant Data”, Improvement Science Research Network (ISRN) Metallurgy, 10, 2013
[48]L. Shao, H. Saxèn, “A Simulation Study of Two-liquid Flow in the Taphole of the Blast Furnace”, The Iron and Steel Institute of Japan (ISIJ) International, 53, pp.988-994, 2013
[49]O. He, P. Zulli, F. Tanzil, B. Lee, J. Dunning, G. Evans, “Flow Characteristics of a Blast Furnace Taphole Stream and Its Effects on Trough Refractory Wear”, The Iron and Steel Institute of Japan (ISIJ) International, 42, pp.235-242, 2002
[50]王勵, 高爐主流道鐵渣分離效率之數值解析, 國立國立中興大學化學工程研究所碩士論文, 2013
[51]L. Shao, H. Saxèn, “Flow Pattern of Iron and Slag in the Blast Furnace Taphole”, The Iron and Steel Institute of Japan (ISIJ) International, 53, pp.1756-1762, 2013
[52]M. J. Luomala, T. T. Paananen, M. J. Köykkaä, T. M. J. Fabritius, H. Nevala, J. J. Härkki, “Modelling of Fluid Flows in the Blast Furnace Trough”, Steel Research, 72, pp.130-135, 2001
[53]P. Stevenson, Q. He, “Slug Flow in Blast Furnace Taphole”, Chemical Engineering and Processing, 44, pp.1094-1097, 2005


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔