跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許坤霖
研究生(外文):Kun-Lin Hsu
論文名稱:透明聚酯壓克力負型光阻之物性優質化及微影特性研究
論文名稱(外文):Study on Optimal Property and Photolithography of Negative-work and Transparent Photosensitive Polyester Acrylate
指導教授:鄭文桐
口試委員:李宗銘張棋榕
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:103
中文關鍵詞:透明感光性高分子聚酯壓克力樹脂硬度附著力田口方法光微影
外文關鍵詞:transparentphotosensitive polymerpolyester acrylatehardnessadhesionTaguchi methodphotolithography
相關次數:
  • 被引用被引用:1
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來全球智慧型電子產品的使用越來越深入生活,光電產業在觸控面板的技術上積極發展,其中單片式玻璃觸控面板 (one glass solution, OGS)的解決方案能讓複雜的模組堆疊結構轉為輕薄化,目前以透明負型感光性高分子薄膜作為絕緣材料的應用上還有物理性質上的不足,因此本研究決定以硬度及附著力作為目標,藉由田口品質工程找出最佳之配方條件及製程參數,本論文主要分為兩部分。
第一部分,感光性高分子系統中主要由乙酸丙二醇單甲基醚酯 (PGMEA)、聚酯壓克力樹脂、聚二季戊四醇五丙烯酸酯 (DPHA)、三丙烯乙二醇雙丙烯酸酯 (TPGDA)及光起始劑 (Irgacure 500)所組成,我們設計L9 (34)直交表,規劃不同單體之間的比例、光起始劑含量、曝光量及硬烤時間進行實驗,將鉛筆硬度及十字切割之附著力數值化後,透過權重比進行正規化,接著利用S/N比的計算及變異數分析 (ANOVA)找出最佳硬度及附著力雙目標之參數組合,將製備出的感光性高分子薄膜使用傅立葉轉換紅外光譜儀 (FTIR)及熱重分析儀 (TGA)分別進行光反應程度確認及耐熱性測試。
第二部分為了光微影特性需求,故將最適化配方進一步調整固含量,並透過微影曲線獲得負型光阻之光敏感度及計算出對比度,最後以光學顯微鏡 (OM)觀察圖案之線寬線距比,找出最佳之溶劑添加量。
從結果顯示,本研究獲得以下重要成果:
(1) 由田口方法可知,透明聚酯壓克力負型光阻配方之硬度及附著力的最適化參數為單體添加量DPHA/TPGDA (20phr/15phr)、光起始劑Irgacure 500 (2phr)、曝光量 (1200mJ/cm2)及硬烤溫度 (200℃),經紫外光聚合之感光性薄膜其鉛筆硬度為3H及十字切割附著力為5B。
(2) 由FTIR分析得知,本研究之感光性高分子膜厚為1µm時,其雙鍵轉化率達84%所需曝光能量為1800mJ/cm2。
(3) 本研究的透明感光性高分子之熱裂解溫度由TGA測試得知,在膜厚1µm下,當DPHA添加量由15phr增至20phr,從382℃提升至396℃及曝光量由600mJ/cm2增至1200mJ/cm2時,從379℃提升至396℃,因為交聯密度的提升有助於熱擴散抑制作用;然而,光起始劑含量由2phr增至6phr時,則從396℃降為366℃,此為過多的光起始劑殘餘導致交聯結構變質。
(4) 當光阻配方固含量由16.2wt.%提升至25.9wt.%時,在膜厚1µm下,無膜厚損失所需最低曝光能量從68 mJ/cm2增至90 mJ/cm2且對比度從1.26降至0.68,此為黏度增加時會使聚合速率降低所致。
(5) 當固含量為19.7wt.%,曝光能量600 mJ/cm2及以0.01wt.% KOH溶液顯影30秒後,經由OM觀察得知,本研究之光阻微影線寬線距比可達到1.1,其所需曝光量較高之原因推測為汙染物而導致光罩的光穿透率下降所致。


In recent years, the use of smart 3C product is tend to occupy our life in the global. Therefore, the development of the optoelectronics industry more and more focus on new touch panel technology. Among them, one glass solution (OGS) is a kind of outstanding method to overcome difficulties. It allows complex modules stacked structure turn to slim type. Currently, the physical properties of negative-tone photosensitive transparent insulation materials are still insufficient. In this study, we select hardness and adhesion properties as targets for Taguchi method to find the optimal formulation and process. The experiment is mainly divided into two parts in this study.
Firstly, we designed L9 (34) orthogonal array experiments to optimize the ratio of monomers, amount of photoinitiator, exposure dosages, and post baking temperature for the polymer solution composed from propylene glycol monomethyl ether acetate (PGMEA), polyester acrylate oligomer, photoinitiator (Irgacure 500), reactive monomers of dipentaerythritol hexaacrylate (DPHA) and tri (propylene glycol) diacrylate (TPGDA) to obtain the excellent hardness and adhesion of photopolymeric film through Taguchi method associated with analysis of variance (ANOVA). Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) are to be also employed to examine thermal resistance and degree of photo-polymerization, respectively, after casting film in this work.
Secondly, photolithography characteristics of the photoresist films under different solid content can be used to evaluate sensitivity and contrast. Also, the optical microscope (OM) was used to observe the pattern resolution of the line width.
As shown in results, the significant findings of this study could be remarked as below:
(1) The optimal conditions of formula and process are 20phr/15phr of DPHA/TPGDA, 2phr of Irgacure 500, 1200mJ/cm2 of UV dosage, and post baked temperature in furnace at 200℃ respectively, resulting in the transparent photosensitive polyester acrylate both with the pencil hardness of 3H and the cross-cut adhesion of 5B.
(2) The conversion of transparent photosensitive polyester acrylate film at 1µm reach 84% after irradiating with 1800 mJ/cm2 of UV light, as measured by FTIR.
(3) As measured by TGA, the thermal decomposition temperature of transparent photosensitive polyester acrylate film with thickness of 1µm will increase from 382℃ to 396℃ and from 379℃ to 396℃ but decrease from 396℃ to 366℃, as the content of DPHA was varied from 15phr to 20phr, the UV exposure was changed from 600mJ/cm2 to 1200mJ/cm2 , and amount of I500 was raised from 2phr to 6phr, which were caused by heat diffusion inhibition effect due to higher crosslinked density and residual photoinitiator resulted in deterioration effect after photo-polymerization respectively.
(4) When the solid content of the negative-work photoresist with thickness of 1µm was varied from 16.2wt.% to 25.9wt.%, for the film thickness without reduction, the requirement of exposure dosages would increase from 68 mJ/cm2 to 90 mJ/cm2, resulting in the contrast would be decreased from 1.26 to 0.68 due to the higher viscosity of photoresist to slow the polymerization rate.
(5) By OM observation, the ratio of line width to space for negative patterns with solid content of 19.7wt.% and film thickness of 1µm is 1.1 after irradiating by 600mJ/cm2 of exposure dosage, followed by development with 0.01wt.% KOH in de-ionic water for 30 seconds.


摘要 i
Abstract iii
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1前言 1
1-2研究動機 2
1-3研究方法 3
1-4本文架構 5
第二章 理論基礎 6
2-1 感光性高分子物性相關文獻 6
2-2 光阻材料 12
2-2-1 光阻 12
2-2-2 寡聚物 14
2-2-3 反應性單體 16
2-2-4 光起始劑 18
2-3 影響紫外光聚合速率之因素 23
2-4 田口品質工程 27
2-4-1 參數設計 27
2-4-2 因子種類 28
2-4-3 直交表 30
2-4-4 訊號雜訊比 32
2-4-5 變異數分析 35
2-4-6 實驗確認 35
第三章 研究方法 36
3-1 感光性高分子優質化配方設計 36
3-1-1 田口品質工程實驗設計 36
3-1-2 變異數分析 39
3-1-3 感光性高分子製備方法 41
3-1-4 硬度測試 42
3-1-5 附著力測試 43
3-1-6 硬度及附著力數值化 45
3-2 負型光微影材料製備及性質分析 46
3-2-1 固含量測定 46
3-2-2 流變性質 47
3-2-3 旋轉塗佈曲線 48
3-2-4 微影特性曲線 49
3-2-5 光微影製程 50
3-3 儀器分析 51
3-3-1 傅立葉轉換紅外光譜儀 (Fourier transform infrared spectroscopy, FTIR) 51
3-3-2 熱重分析儀 (Thermogravimetric analysis, TGA) 52
3-3-3光學膜厚量測儀 54
3-4 實驗材料與儀器設備 57
3-4-1 實驗藥品 57
3-4-2 實驗儀器與設備 61
第四章 結果與討論 63
4-1 感光性高分子物性優質化 63
4-1-1 感光性高分子之軟烤特性 63
4-1-2反應性單體對硬度及附著力的影響 64
4-1-3最適化參數組合 65
4-1-4傅立葉轉換紅外光光譜 74
4-1-5 熱穩定性測試 77
4-2 光微影製程 81
4-2-1 固含量測定 81
4-2-2 流變性質 82
4-2-3 旋轉塗佈曲線 83
4-2-4 微影特性曲線 84
4-2-5 圖案線寬線距解析度 86
第五章 結論與未來方向 94
5-1 結論 94
5-2 未來方向 95
參考文獻 96


[1]Hirai, Y., Uesugi, A., Makino, Y., Yagyu, H., Sugano, K., Tsuchiya, T., & Tabata, O. (2011, June). Negative-photoresist mechanical property for nano-filtration membrane embedded in microfluidics. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International (pp. 2706-2709). IEEE.
[2]Lee, J. S. & Hong, S. I. (2002). Synthesis of acrylic rosin derivatives and application as negative photoresist. European Polymer Journal, 38(2), 387-392.
[3]Rehab, A. (1998). New photosensitive polymers as negative photoresist materials. European polymer journal, 34(12), 1845-1855.
[4]Kukharenka, E., Farooqui, M. M., Grigore, L., Kraft, M., & Hollinshead, N. (2003). Electroplating moulds using dry film thick negative photoresist. Journal of Micromechanics and Microengineering, 13(4), 281-290.
[5]Yilmaz, G., Acik, G., & Yagci, Y. (2012). Counteranion sensitization approach to photoinitiated free radical polymerization. Macromolecules, 45(5), 2219-2224.
[6]Decker, C. (2002). Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 23(18), 1067-1093.
[7]Fouassier, J. P. & Rabek, J. F. (Eds.). (1993). Radiation curing in polymer science and technology: Practical aspects and applications (Vol. 4). Springer Science & Business Media.
[8]Xu, H., Yang, D., Guo, Q., Wang, Y., Wu, W., & Qiu, F. (2012). Waterborne polyurethane-acrylate containing different polyether polyols: preparation and properties. Polymer-Plastics Technology and Engineering, 51(1), 50-57.
[9]Asiltürk, I. & Neşeli, S. (2012). Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45(4), 785-794.
[10]Khaw, J. F., Lim, B. S., & Lim, L. E. (1995). Optimal design of neural networks using the Taguchi method. Neurocomputing, 7(3), 225-245.
[11]Kackar, R. N. (1989). Off-line quality control, parameter design, and the Taguchi method. In Quality Control, Robust Design, and the Taguchi Method (pp. 51-76). Springer US.
[12]Weiss, K. D. (1997). Paint and coatings: a mature industry in transition. Progress in Polymer Science, 22(2), 203-245.
[13]林顯光、陳世明、陳品誠、曾美榕、林國權、曾寶貞 (2012)。Finetech Japan 2012特別報導系列二,民國一○五年八月十六日,取自: https://www.materialsnet.com.tw/DocView.aspx?id=10276
[14]Schwalm, R., Häußling, L., Reich, W., Beck, E., Enenkel, P., & Menzel, K. (1997). Tuning the mechanical properties of UV coatings towards hard and flexible systems. Progress in Organic Coatings, 32(1), 191-196.
[15]Ali, M. A., Ooi, T. L., Salmiah, A., Ishiaku, U. S., & Ishak, Z. A. (2001). New polyester acrylate resins from palm oil for wood coating application. Journal of applied polymer science, 79(12), 2156-2163.
[16]Kim, D. S. & Seo, W. H. (2004). Ultraviolet‐curing behavior and mechanical properties of a polyester acrylate resin. Journal of applied polymer science, 92(6), 3921-3928.
[17]Bai, C. Y., Zhang, X. Y., Dai, J. B., & Li, W. H. (2006). A new UV curable waterborne polyurethane: Effect of C C content on the film properties. Progress in Organic Coatings, 55(3), 291-295.
[18]Xu, H., Qiu, F., Wang, Y., Wu, W., Yang, D., & Guo, Q. (2012). UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties. Progress in Organic Coatings, 73(1), 47-53.
[19]Decker, C., & Moussa, K. (1989). Real-time kinetic study of laser-induced polymerization. Macromolecules, 22(12), 4455-4462.
[20]Masson, F., Decker, C., Jaworek, T., & Schwalm, R. (2000). UV-Radiation curing of waterbased urethane–acrylate coatings. Progress in Organic Coatings, 39(2), 115-126.
[21]Lee, J. H., Prud''Homme, R. K., & Aksay, I. A. (2001). Cure depth in photopolymerization: experiments and theory. Journal of materials research, 16(12), 3536-3544.
[22]Hong, B. T., Shin, K. S., & Kim, D. S. (2005). Ultraviolet‐curing behavior of an epoxy acrylate resin system. Journal of applied polymer science, 98(3), 1180-1185.
[23]Tomeckova, V. & Halloran, J. W. (2013). Radical depletion model for intensity effects on photopolymerization. Journal of the European Ceramic Society, 33(1), 25-35.
[24]Decker, C. & Elzaouk, B. (1997). Laser‐induced crosslinking polymerization of acrylic photoresists. Journal of applied polymer science, 65(5), 833-844.
[25]Eyre, B., Blosiu, J., & Wiberg, D. (1998, January). Taguchi optimization for the processing of EPON SU-8 resist. In Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings. , The Eleventh Annual International Workshop on (pp. 218-222). IEEE.
[26]Yang, Y. K. & Chang, T. C. (2006). Experimental analysis and optimization of a photo resist coating process for photolithography in wafer fabrication. Microelectronics Journal, 37(8), 746-751.
[27]Huang, T. Y. & Cheng, W. T. (2011). The Effect of Photo-initiator on the Contrast Curve of Negative-work Photo-resist. Journal of Photopolymer Science and Technology, 24(6), 643-646.
[28]Oota, E., Okade, S., Muramatsu, Y., Sawabe, K., & Murakami, Y. (2015). Analysis on Radical Photo-and Thermal-Polymerization of Negative-Tone Acrylic Resist for High Resolution. Journal of Photopolymer Science and Technology, 28(1), 49-54.
[29]Madou, M. J. (2011). Manufacturing techniques for microfabrication and nanotechnology (Vol. 2). CRC Press.
[30]Shaw, J. M., Gelorme, J. D., LaBianca, N. C., Conley, W. E., & Holmes, S. J. (1997). Negative photoresists for optical lithography. IBM Journal of Research and Development, 41(1.2), 81-94.
[31]Uglea, C. V. (1998). Oligomer technology and applications. M. Dekker.
[32]Decker, C. (2001). UV-radiation curing chemistry. Pigment & resin technology, 30(5), 278-286.
[33]Schwalm, R. (2006). UV coatings: basics, recent developments and new applications. Elsevier.
[34]Decker, C. (1996). Photoinitiated crosslinking polymerisation. Progress in Polymer Science, 21(4), 593-650.
[35]Jacobine, A. F. (1993). Radiation curing in polymer science and technology III. Polymerisation Mechanisms. Elsevier Applied Science, 219Chapter.
[36]Glöckner, P. (2008). Radiation curing: Coatings and printing inks; technical basics, applications and trouble shooting (pp. 30-39). Vincentz Network GmbH & Co KG.
[37]Clean Air Technology Center (U.S.). (2011). Ultraviolet and electron beam (UV/EB) cured coatings, inks and adhesives (pp.27-28). DIANE Publishing.
[38]Fouassier, J. P. (1995). Photoinitiation, photopolymerization, and photocuring: fundamentals and applications. Hanser.
[39]Allen, N. S., Marin, M. C., Edge, M., Davies, D. W., Garrett, J., Jones, F., & Parsons, B. J. (1999). Photochemistry and photoinduced chemical crosslinking activity of type I & II co-reactive photoinitiators in acrylated prepolymers. Journal of Photochemistry and Photobiology A: Chemistry, 126(1), 135-149.
[40]Segurola, J., Allen, N., Edge, M., & Roberts, I. (1999). Photochemistry and photoinduced chemical crosslinking activity of acrylated prepolymers by several commercial type I far UV photoinitiators. Polymer degradation and stability, 65(1), 153-160.
[41]Segurola, J., Allen, N., Edge, M., Parrondo, A., & Roberts, I. (1999). Photochemistry and photoinduced chemical crosslinking activity of several type II commercial photoinitiators in acrylated prepolymers. Journal of Photochemistry and Photobiology A: Chemistry, 122(2), 115-125.
[42]Masson, F., Decker, C., Andre, S., & Andrieu, X. (2004). UV-curable formulations for UV-transparent optical fiber coatings: I. Acrylic resins. Progress in organic coatings, 49(1), 1-12.
[43]Pappas, S. P. (Ed.). (2013). Radiation curing: science and technology (pp. 115-122). Springer Science & Business Media.
[44]Drobny, J. G. (2010). Radiation technology for polymers (pp.21-23). CRC press.
[45]Bishop, C. (2011). Vacuum deposition onto webs, films and foils (pp.230-231). William Andrew.
[46]Green, W. A. (2010). Industrial photoinitiators: a technical guide (pp.17-45). CRC Press.
[47]渡部義晴 (2011)。田口方法的應用,鼎茂圖書出版公司。
[48]楊素芬 (2002)。品質管理,華泰文化事業股份有限公司。
[49]Kuehl, R. O. (1994), Design of Experiments: Statistical principles of Research Design and Analysis, 2nd edition, Duxbury Press, Pacific Grove, CA.
[50]Montgometry, D. C. (1997), Design and Analysis of Experiments, 4th edition, John Wiley & Sons, New York.
[51]吳復強 (2002)。田口品質工程,全威圖書。
[52]田口玄一 (2003)。田口統計解析法,五南圖書出版股份有限公司。
[53]劉漢容 (2003)。品質管制,三民書局。
[54]Weng, W. C., Yang, F., & Elsherbeni, A. (2007). Electromagnetics and antenna optimization using Taguchi’s method. Synthesis Lectures on Computational Electromagnetics, 2(1), 1-94.
[55]羅錦興 (1999)。田口品質工程指引,中國生產力中心。
[56]立林和夫 (2008)。入門田口方法,中衛發展中心。
[57]蘇朝墩 (2002)。品質工程,中華民國品質管制學會。
[58]吳玉印 (1998)。新版實驗設計法,中興管理顧問公司。
[59]Briant, J., Denis, J., & Parc, G. (1985). Propriétés rhéologiques des lubrifiants (pp.81-87). Editions Technip.
[60]Widmann, D., Mader, H., & Friedrich, H. (2013). Technology of integrated circuits (Vol. 2) (pp. 33-34). Springer Science & Business Media.
[61]Brian, C. S. (1995). Fundamentals of Fourier Transform Infrared Spectroscopy (pp.9). CRC Press.
[62]Barbara, H. S. (2002). Polymer Analysis (pp. 201-202). John Wiley & Sons, Ltd.
[63]Speckhard, T. A., Hwang, K. K. S., Lin, S. B., Tsay, S. Y., Koshiba, M., Ding, Y. S., & Cooper, S. L. (1985). Properties of UV‐curable polyurethane acrylates: Effect of reactive diluent. Journal of applied polymer science, 30(2), 647-666.
[64]Horigome, K., Ebe, K., & Kuroda, S. I. (2004). UV curable pressure‐sensitive adhesives for fabricating semiconductors. II. The effect of functionality of acrylate monomers on the adhesive properties. Journal of applied polymer science, 93(6), 2889-2895.
[65]Vitale, A., Priola, A., Tonelli, C., & Bongiovanni, R. (2014). Improvement of adhesion between a UV curable fluorinated resin and fluorinated elastomers: Effect of chemical modification onto the mechanical properties of the joints. International Journal of Adhesion and Adhesives, 48, 303-309.
[66]Zhang, T., Wu, W., Wang, X., & Mu, Y. (2010). Effect of average functionality on properties of UV-curable waterborne polyurethane-acrylate. Progress in Organic Coatings, 68(3), 201-207.
[67]Lee, S. W., Park, J. W., Kim, H. J., Kim, K. M., Kim, H. I., & Ryu, J. M. (2012). Adhesion performance and microscope morphology of UV-curable semi-interpenetrated dicing acrylic PSAs in Si-wafer manufacture process for MCP. Journal of Adhesion Science and Technology, 26(1-3), 317-329.
[68]Kim, P. S., Lee, S. W., Park, J. W., Park, C. H., & Kim, H. J. (2013). Kinetic and characterization of UV-curable silicone urethane methacrylate in semi-IPN-structured acrylic PSAs. Journal of Adhesion Science and Technology, 27(17), 1866-1872.
[69]Mittal, K. L. (Ed.). (2006). Contact angle, wettability and adhesion (Vol. 4) (212-217). CRC Press.
[70]Bi, Y., Li, Z., Wang, N., & Zhang, L. (2016). Preparation and characterization of UV/thermal dual-curable polyurethane acrylate adhesive for inertial confinement fusion experiment. International Journal of Adhesion and Adhesives, 66, 9-14.
[71]Kim, H. K., Ju, H. T., & Hong, J. W. (2003). Characterization of UV-cured polyester acrylate films containing acrylate functional polydimethylsiloxane. European polymer journal, 39(11), 2235-2241.
[72]Kunwong, D., Sumanochitraporn, N., & Kaewpirom, S. (2011). Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers. Sonklanakarin Journal of Science and Technology, 33(2), 201.
[73]陳育甄 (2003)。熱固性馬來醯胺-環氧樹脂及雙馬來醯胺樹脂合成及性質研究, 私立中原大學化學工程學系碩士論文。
[74]王維廷 (2008)。紫外光固化聚酯壓克力樹脂其性質之研究,私立東海大學化學工程學系碩士論文。
[75]Lu, K. T. & Chang, C. W. (2007). Effects of Monomers and Dosages of Photoinitiator on the Properties of Epoxy Acrylate UV-curing Coatings. Quarterly Journal of Forest Research, 29(2), 77-88.
[76]Chattopadhyay, D. K., Panda, S. S., & Raju, K. V. S. N. (2005). Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Progress in Organic Coatings, 54(1), 10-19.
[77]Dai, J., Ma, S., Liu, X., Han, L., Wu, Y., Dai, X., & Zhu, J. (2015). Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Progress in Organic Coatings, 78, 49-54.
[78]Zhang, Y., Miao, H., & Shi, W. (2011). Photopolymerization behavior and properties of highly branched polyester acrylate containing thioether linkage used for UV curing coatings. Progress in Organic Coatings, 71(1), 48-55.
[79]Madou, M. J. (2002). Fundamentals of microfabrication: the science of miniaturization (pp.2-10). CRC press.
[80]張豐志 (2003)。應用高分子手冊,五南出版社。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊