(3.236.118.225) 您好!臺灣時間:2021/05/14 12:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:趙之晟
研究生(外文):Chih-Cheng Chao
論文名稱:高阻氣性醫用丁基橡膠之製備與應用研究
論文名稱(外文):Preparation and Application of High Gas Barrier Medical Butyl Elastomer
指導教授:鄭文桐薛敬和薛敬和引用關係
口試委員:李榮和蔡協致駱俊良
口試日期:2016-07-29
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:158
中文關鍵詞:丁基橡膠溴化異丁烯對甲基苯乙烯共聚物過氧化物與助交聯劑之交聯反應阻氣性丁基乳膠奈米丁基橡膠複合材料
外文關鍵詞:butyl rubberbrominated isobutylene p-methyl styreneperoxides coagents crosslinking reactiongas barrier propertybutyl latexnanocomposites
相關次數:
  • 被引用被引用:1
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
丁基橡膠因為其結構上有超過90%以上的聚異丁烯結構,因此具有極高的阻氣特性,可應用於藥品密封所使用的醫藥用瓶塞,其功能可以隔絕藥品與外界空氣接觸且能阻隔細菌進入藥瓶中,除此之外,丁基橡膠具有優秀的耐撕裂特性,可以耐金屬鋼針穿刺後產生的落屑,且丁基橡膠製成的丁基乳膠也因高阻氣特性亦可應用於阻擋毒氣與隔絕病毒所使用的防護衣與防護手套。
本研究主要是以高阻氣性丁基橡膠為研究主軸,並分為第一部與第二部兩個研究主題,其中第一部為 : 新穎丁基橡膠以過氧化物/助交聯劑進行交聯反應之機制與物性探討;而第二部為 : 丁基乳膠/奈米黏土複合材料之製備與物性探討。

第一部為新穎丁基橡膠以過氧化物/助交聯劑進行交聯反應之機制與物性探討,目前BIMS用於藥用瓶塞之交聯系統為HMDAC,但此系統有許多缺點如:阻氣性差、撕裂特性差、永久壓縮變形差,因此第一部分為研究過氧化物/助交聯劑交聯新一代的丁基橡膠BIMS (brominated isobutylene p-methyl styrene),並改善BIMS用於藥用瓶塞之缺點。研究中以分子設計的方法且利用過氧化物中奪氫能力較低的TBEC (tert-butylperoxy 2-ethylhexyl carbonate),此低奪氫能力之過氧化物TBEC可以選擇性與BIMS主鏈中之官能基p-MS、溴化p-MS進行交聯反應。此外,TBEC有較低的交聯反應溫度,可以降低BIMS主鏈中聚異丁烯 (poly isobutylene)因自由基而發生的β-scission反應。
然後,本研究再進一步比較不同的助交聯劑與過氧化物TBEC共交聯BIMS,實驗結果顯示,利用助交聯劑BMI-MP (N,N’-m- phenylene dimaleimide)與TBEC交聯BIMS,有利於提高BIMS之交聯效率,並從FT-IR與橡膠硫化數據TS2之分析了解到,助交聯劑BMI-MP於BIMS共交聯反應中是以零級反應之H-transfer為主要交聯機制。由動態機械性質的結果分析,得知交聯網目結構中有部分交聯點發生在p-methyl styrene的位置,此結果顯示能提高BIMS的彈性。
最後,將過氧化物交聯系統 (TBEC/BMI-MP)與目前用於醫用膠塞的之雙胺硫化系統HMDAC比較兩者之物理特性,證實TBEC/BMI-MP系統可取代HMDAC系統,並可將BIMS之透氧率降低30%,熱裂解溫度提高10度,撕裂強度提高20~ 30%,及永久壓縮變形率提高達30%,由此可知,以過氧化物交聯新穎丁基橡膠BIMS,未來在藥用瓶塞的應用上將有相當大的潛力與應用性。

第二部為丁基乳膠/奈米黏土複合材料之製備與物性探討,這個部分研究丁基乳膠摻混奈米級黏土,使黏土於橡膠基材中,達到奈米級剥層 (exfoliation)或插層 (intercalation)之分散,實驗方法為利用行星式奈米球磨機先將奈米黏土乳化分散後,再分別以乳化法 (emulsion)與共凝聚法 (co-coagulation)的方式製備丁基橡膠之奈米黏土複合材料,並以XRD、TEM分析黏土之分散性。結果發現,乳化法可達剝層結構而共凝聚法所得之結構皆為插層結構,且利用DMA、TGA量測兩種製備方法之丁基橡膠複合材料在不同黏土比例下的動態機械性質與熱性質,其中以乳化法制備丁基橡膠複材 (EmR-5)於DMA檢測其玻璃轉化溫度 (Tg)為-24.76oC,與原丁基橡膠比較下降約 3 oC,此乃界面活性劑造成潤滑作用所致,熱分解溫度為(Td) 342 oC,Td值上升19oC是由於黏土分散性佳所致。此外,運用乳化法測試透氧率分析得知阻氣性結果提升可達30%以上。然而,共凝聚法製備之複材其物理特性並無顯著改變,表示插層結構的複材物理特性提升的效果有限。最後,利用萬能拉力機比較各試樣的機械性質,結果顯示以乳化法製備之奈米橡膠其硬度測試較純料提高20%,而拉力提升約2倍,由此得知,使用乳化摻混方式製備奈米黏土橡膠複合材料在醫療器材上,有充分應用的潛力。


Butyl rubber (IIR) has high gas barrier property because of its high content of polyisobutylene about 90% in butyl rubber polymer chain. Because of its excellent gas barrier property IIR could be applied to medical closure drug sealing. IIR based sealing materials can be use to isolate air and avoide bacteria into a vial effectively. Moreover, excellent tear strength of IIR can be employed to resist fragment when puncturing a metal needle into butyl rubber closure. In addition, butyl latex is made by butyl rubber, which can be applied to protect clothing and gloves. Such a high gas barrier of butyl clothing and gloves can be used to block poisonous gas and virus.
In this study focused to prepare the high gas barrier of butyl elastomer, which is divided into two parts. Part I aims to evaluate the cross-linking reaction mechanism and physical properties of brominated isobutylene p-methyl styrene (BIMS) by peroxide/co-agent. Part II is the preparation and physical properties of butyl latex/nano-clay composites.
In part I, in order to evaluate the cross-linking reaction mechanism and physical properties of BIMS, peroxide and co-agent have been used to cure the new generation butyl elastomer BIMS. The main objective of this study is to improve the defect of the current traditional vulcanization of HMDAC (hexamethylene diamine carbamate) for medical closure. By using molecular design selected peroxide TBEC (tert-butyl peroxy 2-ethyl hexyl carbonate) to crosslink BIMS. Free radical of peroxide TBEC has less hydrogen absorption ability resulting in cross-linking reaction of BIMS by absorption hydrogen and bromine atoms of BIMS backbone of the p-methyl styrene and brominated p-methyl styrene. Furthermore, the obtained results were compared with different co-agent to crosslink BIMS with peroxide TBEC. The results revealed that the BMI-MP (N,N’-m- phenylene dimaleimide) leading to the most efficient cross-linking density. Additionally, FT-IR and rubber rheometer analysis explored the main cross-linking reaction mechanism is H-transfer of zero order reaction. The result of dynamic mechanical properties shows that the cross-linking network of BIMS had some portion on p-methyl styrene group and it can enhance the elasticity of BIMS. Finally, this research compared physical properties of new vulcanization system of peroxide / co-agent and traditional vulcanization process of HMDAC for medical rubber closure. The result of experiment demonstrated that the new system of TBEC/BMI-MP can replace HMDAC system, and increased the oxygen transmission of 30%, decomposition temperature of 10℃, tear strength of 20~30%, and the compression set of 30% respectively. Based on above results, the developed peroxide method to crosslink new generation BIMS would be considerable potential usage in medical rubber closure.
In other part, this research has studied the preparation and physical properties of butyl latex / nano-clay composites for the nano-scale dispersion of exfoliation and intercalation structure. Planetary nanoball-mill and surfactant have been utilized to prepare the layered clay based nanocomposites by co-coagulation and emulsion method, respectively. The dispersion of layered clay based nanocomposites was investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM images were clearly revealed that the partially exfoliated and intercalated obtained via latex method, and purely intercalated attained via co-coagulating method. In addition, DMA and TGA were performed to evaluate the change of dynamic mechanical and thermo properties of different content of nano-clay in the latex method. The result shows the Tg of butyl latex composites (EmR-5) was -24.76 oC, which was decreased about 3 oC when comparing with pure butyl rubber (EmR-0). The reduction of Tg attributed from the surfactant, which can plays an efficient role as a lubricate, and decomposition temperature was increased by 19 oC due to good dispersion and exfolicated clay. Emulsion method based nanocomposites shows the decreased oxygen transmission of 30%, upon compared with that the co-coagulation method, because of the intercalated structure of co-coagulation method does not influenced on the physical properties of nanocomposites. Additionally, the hardness and the tensile strength have been risen up to 20% and 2 times higher than the pure IIR material by emulsion method. The study herein prepared clay/rubber nanocomposites provide insights to the potential usage in medical device by using latex blending with nanoclay.


謝誌 i
摘要(中文) ii
摘要(英文) iv
目錄 vii
圖目錄 xii
表目錄 xvi
縮寫表 xviii
第一部 新穎丁基橡膠以過氧化物/助交聯劑進行交聯反應之機制與物性探討 1
摘要 1
第一章 緒論 2
1.1 研究背景 2
1.2 研究動機 8
第二章 文獻解析 10
2.1 橡膠和交聯反應 10
2.2 過氧化物 11
2.2.1 過氧化物的交聯反應 15
2.2.2 過氧化物的反應機制 16
2.2.3 過氧化物和硫磺交聯反應的比較 19
2.3 助交聯劑 20
2.3.1 助交聯劑的分類 21
2.3.2 助交聯劑之反應機制 22
2.4 丁基橡膠彈性體 25
2.4.1 丁基橡膠 25
2.4.2 鹵化丁基橡膠 30
2.4.3 BIMS聚合物 31
2.5 聚異丁烯 (PIB)橡膠的過氧化物交聯反應 34
2.6 交聯密度的測定 36
2.6.1 溶劑膨脹法 36
2.6.1.1常壓溶脹法 36
2.6.1.2壓縮溶脹法 37
2.6.2 機械拉伸法 38
2.6.3 脈衝 NMR法 38
2.6.4 動態黏彈性法 (dynamic mechanical analysis) 38
第三章 實驗 39
3.1 實驗介紹 39
3.2 實驗方法 42
3.2.1 原材料 42
3.2.2 實驗流程 44
3.2.3 配方混練 45
3.3 實驗設備與儀器 46
3.3.1 橡膠硫化儀 47
3.3.2 焦燒門尼測試 (Mooney scorch) 48
3.3.3 動態黏彈性分析儀DMA 48
3.3.4 熱重分析儀TGA (thermogravimetric analysis) 48
3.3.5 氧氣透過率 49
3.3.6 永久壓縮變形率 (compression set)測試 49
3.3.7 測定機械特性 50
3.3.8 交聯密度測試C.D (crosslinking density) 50
第四章 結果與討論 51
4.1 DCP/BMI-MP硫化BIMS之硫化機制探討 51
4.2 過氧化物 (DCP/TBEC)硫化BIMS之探討 53
4.3 六亞甲基二胺氨基甲酸脂 (HMDAC)硫化BIMS 60
4.4 TBEC/與各助交聯劑交聯BIMS之探討 62
4.5 傅立葉轉換紅外光譜全反射分析 (FT-IR ATR) 66
4.5.1 樣品製作 66
4.5.2 FT-IR結果和討論 66
4.6 過氧化物 (TBEC)變量對BIMS/BMI-MP交聯的影響 67
4.7 TBEC/BMI-MP交聯不同含量p-MS之BIMS 70
4.8 各交聯系統之交聯密度 (C.D)探討 75
4.8.1 常溫常壓溶脹法計算各交聯系統之交聯密度 75
4.8.2 拉伸法計算各交聯系統之交聯密度 78
4.9 各配方物性探討 81
4.9.1 各BIMS交聯系統之抗拉強度 (Tensile strength)討論 81
4.9.2 各BIMS交聯系統之抗拉強度與交聯密度的關係 83
4.9.3 各BIMS交聯系統之撕裂強度與交聯密度的關係 85
4.9.4 各BIMS交聯系統之永久壓縮變形率 (C.S) 86
4.9.5 BIMS各交聯系統之熱重分析 87
4.9.6 各BIMS交聯系統之動態機械性質分析 (DMA) 89
4.9.6.1各系統的Tan δ分析交聯結構 89
4.9.6.2各BIMS交聯系統之損失模數與儲存模數分析 92
4.9.7 BIMS各交聯系統之阻氣性分析 94
第五章 結論 97
5.1 過氧化物硫化BIMS機制: 97
5.2 過氧化物/助交聯劑硫化BIMS機制: 97
5.3 不同含量p-MS與溴化p-MS 98
5.4 各物理特性與交聯密度/交聯結構的關係 98

第二部 丁基乳膠/奈米黏土複合材料之製備與物性探討。 99
摘要 99
第一章 緒論 100
1.1 研究背景 100
1.2 研究動機 104
第二章 文獻解析 105
2.1 丁基乳膠之製備 105
2.1.1 乳膠配合劑之分類、性質與選擇 106
2.1.2 分散劑 106
2.1.3 濕潤劑 106
2.1.4 穩定劑 107
2.1.5 增稠劑 107
2.2 乳膠之硫化 108
2.2.1 丁基乳膠之硫化配方 109
2.3 高分子奈米複合材料簡介 110
2.4 黏土之簡介 115
第三章 實驗 118
3.1 實驗設計 118
3.2 實驗方法 119
3.2.1 原材料 119
3.2.2 實驗流程 120
3.2.2.1乳膠法實驗步驟 121
3.2.2.2共凝聚法實驗步驟 123
3.3 實驗設備 125
3.3.1 行星式奈米球磨機 126
3.3.2 X射線繞射儀 (XRD) 126
3.3.3 電位與粒徑分析儀 127
3.3.3.1粒徑檢測 (DLS) 127
3.3.3.2界面電位 (zeta potential) 128
3.3.4 穿透式電子顯微鏡 (TEM) 128
第四章 結果與討論 129
4.1 改質黏土系統分析 129
4.2 乳化法製備IIR/clay奈米複材之XRD分析 131
4.3 共凝聚法製備IIR/clay奈米複材之XRD分析 133
4.4 硫化對於製備IIR/clay奈米複材之黏土結構影響 134
4.5 丁基橡膠/奈米黏土複材之TEM分析 136
4.6 乳化法製備IIR/Clay之拉力分析 138
4.7 共凝聚法製備IIR/Clay之拉力分析 140
4.8 乳化法之動態機械性質分析 141
4.9 共凝聚法之動態機械性質分析 143
4.10 乳化法熱性質分析 144
4.11 共凝聚法熱性質分析 146
4.12 氧氣透過率分析 147
第五章 結論 149
5.1 穿透式電子顯微鏡 (TEM)分析 149
5.2 拉力測試: 149
5.3 動態機械性質 (DMA)分析: 149
5.4 熱重損失 (TGA)分析: 149
5.5 氧氣透過率分析: 149
總結論 150
參考文獻 151






1. F. P. Baldwin and R. H. Schatz, Elastomers Synthetic (Butyl Rubber)
in ECT 3rd Ed. by Exxon Chemical Co., 8, 470-484
2. Z. Rappoport, The Chemistry of Dienes and Polyenes, 1 , 683-732
(2003)
3. P. Masucci, M. Moffat, The diffusion for phenol and tricresol through
rubber. J Pharm Sci, 12, 117 (1923)
4. H. Berry, Pharmaceutical aspects of glass and rubber. J. Pharm.
Pharmacol, 5, 1008 (1953)
5. S. Reznek, Rubber closure for containers of parenteral solution I: The
effect of temperature and pH on the rate of leaching of zinc salts from rubber closure in contact with (acid) solution. J. Am. Pharm. Assoc., 42, 288 (1953)
6. G. Milosovich, A. M. Mattocks, Haze formation of rubber closures
for injection. J. Am. Pharm. Assoc., 46, 377 (1957)
7. M. A. Inchiosa, Water-soluble extractives of disposable syringes:
Bature and significance, J. Pharm. Sci., 54, 1379 (1965)
8. K. R. Capper, Interaction of rubber with medicaments. J. Modial de
Pharmacie, 9, 305 (1966)
9. W. K. Wong, Rubber World, 240 (3), 20-29 (2009)
10.J.M.G. Cowie, Polymers: Chemistry & Physics of Modern
Materials, Stanley Thornes, Cheltenham, 2nd Ed. (1998)
11.C.M. Blow and C. Hepburn, Rubber Technology and Manufacture,
Butterworth Scientific, London, 2nd Ed. (1981)
12.H. Dikland, Co-agents in Peroxide Vulcanisation of EP(D)M
Rubber, University of Twente: Enschede. (1992)
13.W. Hofmann, Rubber Technology Handbook, Hanser Publishers,
New York, 1st Ed. (1994)
14.J.E. Mark, Science and Technology of Rubber, Academic Press, San
Diego, 2nd Ed. (1994)
15.K.C. Barnawal and H.L. Stephens, Basic Elastomer Technology,
Rubber Division, American Chemical Society, Akron, 1st Ed. (2001)
16.P.R. Dluzneski, Rubber Chem. Technol., 74, 451 (2001)
17.I.I. Ostromislensky, J. Russ. Phys. Chem. Soc., 47, 1885 (1915)
18.L.D. Loan, Rubber Chem. Technol., 40, 149 (1967)
19.R.C. Keller, Rubber Chem. Technol., 61, 238 (1988)
20.W. Hofmann, Kautsch. Gummi Kunstst, 40 (4), 308 (1987)
21.Nozomi ARIGA: Nippon Gomu Kyoukaishi, 87, 77 (2014)
22.P.R. Dluzneski, Rubber Chem. Technol., 74, 451 (2001)
23.W. Hofmann, Progress in Rubber and Plastics Technology, 1 (2), 18
(1985)
24.D. Ogunniyi, Prog. Rubber Plast. Technol., 15, 95 (1999)
25.M. Braden, W.P. Fletcher and G.P. McSweeny, Trans. Inst. Rubber
Ind., 30, 44 (1954)
26.P. R. Dluzneski, Rubber Chemistry and Technology, 74 (3) 451-429 (2001)
27.P.R. Dluzneski, Rubber Chemistry and Technology, 74 (3), 451
(2001)
28.J. Class, Rubber World, 220 (5), 35 (1999)
29.B.M.E. van der Hoff, Ind. Eng. Chem. Prod. Res. Dev., 2 , 273
(1963)
30.K.C. Baranwal and H.L. Stephens, Basic Elastomer Technology,
Rubber Division, American Chemical Society, Akron, 1st Ed. (2001)
31.E.H. Farmer and S.E. Michael, J. Chem. Soc., 513 (1942)
32.E.H. Farmer and C.G. Moore, J. Chem. Soc., 131 (1951)
33.E.H. Farmer and C.G. Moore, J. Chem. Soc., 142 (1951)
34.O. Lorenz and W. Scheele, Kautschuk Gummi, 8, 273 (1955)
35.O. Lorenz and W. Scheele, Rubber Chem. Technol., 29, 901 (1956)
36.D. Swern, Organic Peroxides, Wiley Interscience, New York, 1s
Ed.(1969)
37.A.R.D.L. Gonzalez Hernandez, J.L. de Benito Gonzalez, Rubber
Chem. Technol., 65, 869 (1992)
38.E.E. van Bevervoorde-Meilof, Improving Mechanical Properties of
EPDM Rubber by Mixed Vulcanisation, University of Twente: Enschede. (1998)
39.H. Dikland, Co-agents in Peroxide Vulcanisation of EP(D)M Rubber,University of Twente, Enschede, (1992)
40.T. Kemperman, Rubber Chem. Technol., 61, 422 (1988)
41.P.O. Tawney, W.J. Wenisch, S. van der Burg and D.I. Relyea, J.
Appl.Polym.Sci., 8, 2281 (1964)
42.R.E. Drake, J.J. Holliday and M.S. Costello, Rubber World, 213 (3),
22 (1995)
43.W.C. Endstra, Kautsch. Gummi Kunstst, 43, 790 (1990)
44.R.D. Allen, J. Elast. Plast., 17, 150 (1985)
45.J.A. Cornell, A.J. Winters and L.H. Jr., Rubber Chem. Technol., 43,
613 (1970)
46.H. Bartl and J. Peter, Kautsch. Gummi, 14 (2), 23 (1961)
47.H.G. Dikland, R. J. M. Hulskotte, L. van der Does and A. Bantjes,
Kautsch.Gummi Kunstst, 46, 608 (1993)
48.F.P. Baldwin and G.V. Strate, Rubber Chem. Technol., 45, 149 (1972)
49.R. Fujio, M. Kitayama, N. Kataoka and S. Anzai, Rubber Chem.
Technol., 52, 74 (1979)
50.S.P. Manik and S. Banerjee, Rubber Chem. Technol., 42, 744 (1969)
51.S.P. Manik and S. Banerjee, Rubber Chem. Technol., 43,1294 (1970)
52.S.P. Manik and S. Banerjee, Rubber Chem. Technol., 43,1311 (1970)
53.K. Hummel, Kautschuk Gummi Kunststoffe, 15, 1 (1962)
54.C.K. Das and S. Banerjee, Rubber Chem. Technol., 47, 266 (1974)
55.A.E. Robinson, J.V. Marra and L.O. Amberg, Ind. Eng. Chem. Prod.
Res. Dev., 1, 78 (1962)
56.T. Izuta, K. Kono, K. Fujioka, A. Shiota, M. Oba, H. Oshita, T. Usamoto, Rubber Chem. Technol., 43 (2), 431-444 (1970)
57.C.K. Das, A.K. Ghosh and S. Banerjee, J. Polym. Sci., Part A:
Polym.Chem., 15 (9), 2255 (1977)
58.A.K. Ghosh, C.K. Das and S. Banerjee, J. Polym. Sci., Part A:
Polym. Chem., 15 (11), 2773 (1977)
59.A.E. Robinson, J.V. Marra and L.O. Amberg, Rubber Chem.
Technol., 36, 1083 (1962)
60.J.V. Fusco, Rubber World, 147 (5), 48 (1963)
61.L.P. Lenas, Ind. Eng. Chem. Prod. Res. Dev., 2, 202 (1964)
62.L.P. Lenas, Rubber Chem. Technol., 37, 299 (1964)
63.Akzo Nobel, Application of coagents for peroxide crosslinking,
Technical Bulletin, (1998)
64.W. Hofmann, Kautsch. Gummi Kunstst, 40, 308 (1987)
65.Q. Yu, S. Zhu and W. Zhou, J. Polym. Sci. A: Polym. Chem., 36, 851
(1998)
66.A. Bucsi and F. Szocs, Macromol. Chem. Phys., 201, 435 (2000)
67.J.C. Garcia-Quesada and M. Gilbert, J. Appl. Polym. Sci., 77, 2657
68.R.E. Drake, J.J. Holliday and M.S. Costello, Rubber World, 213 (3), 22 (1995)
69.A. Tuccio, Rubber World, 209 (5), 34 (1994)
70.S.J. Oh and J.L. Koenig, Rubber Chem. Technol., 73, 74 (2000)
71.P. Kovacic and R.W. Hein, J. Am. Chem. Soc., 81, 1190 (1958)
72.H. Dikland, T. Ruardy, L. van der Does and A. Bantjes, Rubber Chem.Technol., 66, 693 (1993)
73.S.J. Oh and J.L. Koenig, Rubber Chem. Technol., 72, 334 (1999)
74.B. Saethre and M. Gilbert, Polymer, 37, 3379 (1996)
75.Z.H. Murgic, J.Jelenic and L. Murgic, Polym. Eng. Sci., 38, 689 (1998)
76.Model Vulcanization Systems for Butyl Rubber, Halobutyl
Rubber,and BIMS Elastomer, Exxon Mobil Chemical
77.J.V. Fusco, P. Hous, Butyl and Halobutyl Rubbers, In Rubber
Technology 3rd Edition, Editor M. Morton, V.N. Reinhold,
(1987)
78.R.N. WEBB, T. D. SHAFFER, A. H. TSOU, Butyl Rubber, Kirk-Othmer Encyclopedia of Chemical Technology, 4, 433-458 (2003)
79.J.V. Fusco, P. Hous, Butyl and Halobutyl Rubbers, In the Vanderbilt
RubberHandbook 13th Edition, RT Vanderbilt Company, Norwalk CT., (1990)
80.L. Batman, C.G. Moore, M. Porter, B. Saville. Chemistry of
Vulcanization. In Chemistry and Physics of Rubber Like Substances. ( Chapter 15, p465).Maclaren Press, London, (1963)
81.I. Kuntz, R.L. Zapp, R.J. Panchrov, Rubber Chemistry and Technol., 57 (4), 813-825 (1984)
82.R. H. Boyd, P. V. Krishna Pant, Molecular packing and diffusion in
Polyisobutylene, Macromolecules, 24 (23), 6325-6331 (1991)
83.A.Y. Coran. Vulcanization. In Science and Technology of Rubber.
2nd Edition. Ed. J.E Mark, B. Erman, F.R. Eirich, Academic Press, (1994)
84.Macromolecules, 24 (23), 6325-6331 (1991)
85.D.K. Thomas. The degradation of polyisobutylene by dicumyl
Peroxide, Trans. Faraday Soc., 57, 511-517 (1961)
86.L. D. Loan, “The reaction between dicumyl peroxide and butyl
rubbers.” J.Polym. Sci. A: Polym.Chem., 2 (5), 2127-2134 (1964)
87.Sudo et al., U.S. Patent 5, 994, 465.
88.R. Resendes, A. Gronowski, S. Baba, Y.S. Seow, International Patent Application WO 2005/080452A1, (2005)
89.L. Knight, L. Ferrari, T. Crockett, S. Chadder, “Novel Peroxide
Curable Butyl Rubber with Fillers, ”American Chemical Society,
Rubber Division, 178th Technical Meeting, Milwaukee, WI, United
States, Oct. 12-14, 2010
90.Kirk-Othmer Encyclopedia of Chemical Technology, Butyl Rubber,
4 (5), 433-458 (2004)
91.C. E. Oxely, G. J. Wilson, “A peroxide curing butyl rubber,”
Rubber Chem. Technol., 42, 1147 (1969)
92.R. Resendes, A. Gronowski, U.S. Patent No. 0245692, (2005)
93.D.A Smith,:J.Polymer Sci.(c) ,16, 529 (1967).
94.H. Nakauchi, , T. Utsunomiya, , K. Masuda, , S. Inoue, Nippon
Gomu Kyokaishi, 60, 267 (1987)
95.H. Iwabuki, K. Nagata, T. Nogushi, E. Yamada, Nippon Gomu
Kyokaishi, 79, 551 (2006)
96.H. Iwabuki, K. Nagata, T. Nogushi, E. Yamada, Nippon Gomu
Kyokaishi, 75, 409 (2002)
97.K. Fukumori, Shinpan Gomu Gijutu no Kiso, Nippon Gomu
Kyokai Ed., Nippon Gomu Kyokai, Tokyo, 43 (1999)
98.R.E. Drake, Elastomerics, 114, 28 (1982)
99.S. Shanmugam, K. Vikram, Peroxide curable butyl rubber
derivatives, Queen’s University, (2012)
100. H. Jiang, R. Wang, S. Farhan, S. Zheng, J. Appl. Polym. Sci., 132
(15), 41829 (2015)
101. M. Mooney, A theory of large elastic deformation, Journal
of Applied Physics, 11 (9), 582-592 (1940)
102. R. S.Rivlin, Large elastic deformations of isotropic materials. IV.
Further developments of the general theory, Mathematical and
Physical Sciences, 241 (835), 379-397 (1948)
103. A. Usuki, M. Kawasum, Y. Kojima, Y. Fukushima, A. Okada,; T.
Kurauchi, O. Kamigaito, J. Mater, 8, 1179 (1993)
104. Y.Kojima, A.Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O.
Kamigaito, J. Polym. Sci. Part A : Polym. Chem., 31, 983 (1993)
105. Y. Ikeda, S. Kohjiya, In situ formed silica particles in rubber
vulcanizate by the sol-gel method , Polymer, 38, 4417-4423 (1997)
106. Y. Ikeda, S. Kohjiya, Journal of Sol-Gel Sci. and Tech, In Situ
Formation of Particulate Silica in Natural Rubber Matrix, by the
Sol-Gel Reaction, 26, 495-498 (2003)
107. S. Varghese, J.K. Kocsis, Natural rubber-based nanocomposites by
latex compounding with layered silicates, Polymer, 44, 4921-4927
(2003)
108. A.Usuki, A.Tukiguse, M. Kato, Polymer; 43, 2185 (2002)
109. Y.T. Vu, J.E. Mark, L. H. Phom, Engelhardt, M.J. Appl. Polym. Sci.,
82, 1391 (2001)
110. K.S. Kwan, D. A. Harrington, P.A. Moore, J.R. Hahn, J.V. Degroot,
G. T. Burns, Rubber Chem. Technol., 74 (3), 630 (2001)
111. Y. P.Wu, L.Q.Zhang, Y.Q. Wang, Y.Liang, D.S. Yu, J. Appl. Polym. Sci., 82, 2842 (2001)
112. E. Passaglia, W. Bertuccelli, F. Ciardelli, Macromol., 176, 299
(2001)
113. H. Zheng, Y. Zhang, Z.L. Peng, , Polymer Testing, 23, 217 (2004)
114. J. Ma, J. Xu,J.H. Ren, Z.Z. Yu, Y.W. Mai, Polymer, 44, 4619
(2003)
115. S. Sadhu, A. K. Bhowmick,J. Appl. Polym., Sci. 2004; 92: 698.
116. Y.P. Wu, L.Q. Zhang,Y.Z. Wang,Y.Liang,D.S. Yu, J. Appl.
Polym. Sci., 82, 2842 (2001)
117. L. Zhang, Y. Wang, Y. Wang, Y. Sui, D.S. Yu, “Morphology and J. Appl. Polym. Sci.; 78, 1873-1878 (2000)
118. Y.P. Wu, L.Q. Zhang, Y.Q. Wang, Y. Liang, D.S. Yu, J. Appl.
Polym. Sci., 82, 2842-2848 (2001)
119. S. Sadhu, A. K. Bhowmick, J. Appl. Polym. Sci., 92: 698-709
(2004)
120. Y. Wang, L. Zhang, C. Tang, D. Yu, J. Appl. Polym. Sci., 78:
1879-1883 (2000)
121. W.G. Hwang, K.H. Weia, Polymer, 45: 5729-5734 (2004)
122. Product information of Aqualast Lord Techmark, Inc.
123. The Chemistry and Technology of Rubber Latex. By C. Falconer
Flint(1938)
124. A. Bhattacharyya, P.C. Chakraorti, Science and Technology of
Advanced Materials, 2, 449-454 (2001)
125. Y. lkeda, S. kohjiya Chem. Research Japan (1996)
126 K.E. Strawhecker, E. Manias, Chem. Mater., 12, 2943 (2000)
127. Y. Li, H. Ishida, Chem. Mater., 14, 1398 (2002)
128. T. Yui, H.Yoshida, H. Tachibana, D.A. Tryk, H.Inoue, Langmuir
18, 891 (2002)
129. E.A. Manias, L. Touny, K. E. Wu, B. L. Strawhecker, T. C. Chung,
Chem. Mater., 13, 3516 (2001)
130. D.C. Lee, L.W. Jang, J. Appl. Polym. Sci., 61, 1117-1122 (1996)
131. D.C. Lee, L.W. Jang, J. Appl. Polym. Sci.; 68, 1997-2005 (1998)
132. M.W. Noh, D.C. Lee, Polym. Bull., 42, 619-626 (1999)
133. B.K. G. Theng, Formation and Properties of Clay-Polymer
Complexes, Elsevier Scientific, Amsterdam (1979)
134. S. Varghese and J. Karger-Kocsis, Polymer, 44, 4921 (2003)
135. L. Zhang, Y. Wang, Y. Wang, Y. Sui, and D. Yu, J. Appl. Polym.
Sci., 78, 1873 (2000)
136. Y. Wang, L. Zhang, C. Tang, and D. Yu, J. Appl. Polym.Sci
78, 1879 (2000)
137. Y.P. Wu, L.Q. Zhang, Y.Q. Wang, Y. Liang, and D.S. Yu, J. Appl.
Polym. Sci., 82, 2842 (2001)
138. Y.P. Wu, Q.X. Jia, D.S. Yu, and L.Q. Zhang, J. Appl. Polym. Sci.,
89, 3855 (2003)
139. S. Varghese, K. G. Gatos, A. A. Apostolov, and J. Karger-Kocsis,
J. Appl. Polym. Sci., 92, 543 (2004)
140. Y.P. Wu, Y.Q. Wang, Composites Science and Technology;
65, 1195-1202 (2005)
141. M. Lerner, C. Oriakhi, in: A. Goldstein (Ed.), Handbook of
Nanophase Materials, Marcel Dekker, New York, 199 (1997)
142. G. Lagaly, Introduction: from clay mineral-polymer interactions
to clay mineral-polymer nanocomposites, Appl.Clay Sci.,15, 1-9
(1999)
143. D.J. Greenland, J. Colloid Sci., 18, 647-664 (1963)
144. S. Varghese and J. Karger-Kocsis, in Polymer Composites:From
Nano- to Macroscale, K. Friedrich, S. Fakirov, and Z. Zhang, eds.,
Kluwer, Dordrecht (2004)
145. D. Choi, M. kader, J. Appl. Polym. Sci., 98, 1688 (2005)
146. Y. Wang, H. Zhang, Journal of Applied Polymer Science;
96, 318-323 (2005)



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔