(3.92.96.236) 您好!臺灣時間:2021/05/07 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃叡
研究生(外文):Jui Huang
論文名稱:超臨界二氧化碳抗溶包覆產製易溶水葉黃素酯
論文名稱(外文):Supercritical Carbon Dioxide as Antisolvent Coating Lutein Ester with β-cyclodextrin to Improve Water Solubility
指導教授:楊宏達楊宏達引用關係吳佳娟
口試委員:劉永銓
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:葉黃素酯β - 環狀糊精超臨界二氧化碳抗溶沉澱包覆乳化劑
外文關鍵詞:lutein esterβ-cyclodextrinsupercritical carbon dioxide antisolventencapsulationresponse surface methodology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
葉黃素為護眼保健食品的重要成分,屬於脂溶性營養素,因此限制了保健食品之應用。本研究目的為開發水溶性較高的葉黃素酯,以提升在保健食品之實用性。首先將廠商提供的原料進行超音波攪拌萃取葉黃素酯,溶劑為正己烷、丙酮及四氫呋喃,溶固比為 80,萃取時間為 60 分鐘,結果顯示四氫呋喃萃出物含有 25.3 % 葉黃素。將四氫呋喃萃出物進行甲醇-正己烷(1:1, v/v)的液液萃取,可將葉黃素提純至 44.7 %,但水中溶離率幾近於零。再將提純之材料加入 β - 環狀糊精(β-cyclodextrin, β-CD)進行超臨界二氧化碳抗溶結晶(supercritical carbon dioxide antisolvent, SAS),產製易溶水的葉黃素酯包覆物。在固定溫度 55 ºC、抗溶時間 10 min、進料流速 0.5 ml/min 下、探討乳化劑種類 (Tween 20、Tween 80)、乳化劑含量(15 %、25 %)、攪拌時間(0.5、2、4、6 hr) 、壓力(120、140 bar)、提純材料和 β- 環狀糊精之進料量比(Wext/Wβ-CD) (0.5、1、2)對包覆物之總產率、葉黃素濃度、包覆率、回收率以及溶離率的影響。結果顯示乳化劑以 25% tween 80、攪拌時間 4 hr、壓力 140 bar、 Wext/Wβ-CD 0.5 可得較佳之包覆效率 77.9 % 、回收率 43.6 % 及溶離率 30.6 %,沉澱物總產率 69.0% 、葉黃素濃度 94.1 mg/g。因此固定上述條件,以應答曲面實驗設計(response surface methodology, RSM)之中心混成方法(central composite design, CCD)尋找 SAS操作溫度(45、55、65 ºC)及乳化劑含量(15、25、35 %)之最適條件。RSM 預測溫度 57.3 ºC及乳化劑含量 33.6 %時,可得包覆效率 68.8 %、回收率 43.3 % 及溶離率 31.4 %,沉澱物總產率 71.7 %、葉黃素濃度 89.2 mg/g。以 SAS 技術進行 β- CD及乳化劑包覆富含葉黃素酯之萃出物可提升其水中溶離度約 31%。包覆後之產物水溶性明顯增加,可提升葉黃素酯在保健食品之應用性。

Lutein is an important component of health food for protecting the eyes. However, its applications in actual health supplements are rather limited as the substance is a fat soluble nutrient and has very low water solubility. This study aimed to develop a form of lutein ester with improved water solubility to enhance its applications in health supplements. Raw materials provided by the supplier first underwent ultrasonic stirring to extract lutein ester using hexane, acetone, and tetrahydrofuran (THF) at a solvent-to-solid ratio (SSR) of 80 with an extraction time of 60 minutes. Results found that the THF extract provided 25.3% of lutein. The THF extract was then subject to liquid-liquid extraction using a methanol / hexane (1:1, v/v) solvent to further raise lutein purity to 44.7%. However, the solubility of hexane-extract in water was still very close to zero. β-cyclodextrin (β-CD) was then added to the purified material in the supercritical carbon dioxide antisolvent (SAS) process to generate an encapsulated lutein ester with improved water solubility. The process was carried out under a fixed temperature of 55ºC, time of 10 min, and feed flow rate of 0.5 mL/min. Total yield (TY) of the encapsulated material, lutein ester concentration (Clut), encapsulation efficiency (EE), recovery (R), and dissolution rate (RD) were investigated under different emulsifiers (Tween 20 and Tween 80), emulsifier concentrations (15 % and 25 %), stirring times (0.5, 2, 4, and 6 hr), pressures (120 and 140 bar), and feed ratios of the extracted material and β-cyclodextrin (Wext/Wβ-CD) (0.5, 1, and 2). Results showed that the experimental conditions of 25 % of Tween 80 as emulsifier, 4-hr stirring time, 140 bar, and Wext/Wβ-CD of 0.5 gave better results of 77.9% EE, 43.6% R, 30.6% DR, 69.0% TY, and 94.1 mg/g Clut. A response surface methodology (RSM) experiment with central composite design (CCD) was then employed using the aforementioned conditions to identify the optimal SAS temperature (45, 55, and 65ºC) and emulsifier concentration (15, 25, and 35 %). Results of the RSM experiment predicted an optimal condition of 58oC for the temperature and emulsifier concentration of 33.6 %, which would provide the following: 68.8% EE, 43.3% R, 31.0% DR,71.7% TY, and 89.2 mg/g Clut. Using SAS for β-CD with emulsifier encapsulation of extracts rich in lutein ester would help improve dissolution rate in water about 31%. Water solubility was significantly increased for the encapsulated product, improving the applicability of lutein ester in health foods.

摘要 i
Abstract iii
縮寫表 v
目錄 vi
表目錄 viii
圖目錄 ix
附表目錄. x
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的與規劃 2
第二章 文獻回顧 4
2-1類胡蘿蔔素簡介 4
2-2葉黃素簡介 5
2-2-1 葉黃素及葉黃素酯結構 5
2-2-2葉黃素特性 6
2-3 乳化劑介紹 7
2-4 環糊精介紹 8
2-5 超臨界二氧化碳的技術與應用 11
第三章 實驗材料與方法 15
3-1 原料與材料製備 15
3-2 試劑與藥品 16
3-2-1 氣體 16
3-2-2 藥品 16
3-2-3標準 18
3-3 實驗設備 19
3-3-1 超音波攪拌萃取設備 19
3-3-2 超臨界抗溶結晶設備 20
3-3-3高效能液相層析儀(HPLC)24
3-3-4 場發射掃描式電子顯微鏡 25
3-3-5動態光散射粒徑分析儀 25
3-3-6 其他設備 25
3-4 實驗方法與步驟 26
3-4-1 葉黃素定量 26
3-4-2超音波攪拌萃取葉黃素酯 32
3-4-3 液液萃取葉黃素酯 31
3-4-4 溶解度實驗 32
3-4-5 超臨界抗溶沉澱過程 33
3-4-6 溶離率實驗36
3-5 粒徑分析37
3-6電子顯微鏡(SEM)分析37
第四章 結果與討論 38
4-1超音波萃取 38
4-2液液萃取 41
4-3葉黃素酯液液萃取萃出物與 β-CD 在溶劑的溶解度實驗 45
4-4 SAS包覆液液萃出物的預實驗 45
4-4-1 包覆物及乳化劑的影響 45
4-4-2 攪拌時間以及乳化劑種類的影響 45
4-4-3 乳化劑的影響 46
4-4-4進料量比(Wext/Wβ-cd)的影響 46
4-4-5 壓力(P)的影響 47
4-5 應答曲面設計SAS 實驗 49
4-5-1溶離率(DR)應答分析值 53
4-5-2葉黃素濃度(Clut)應答分析值 53
4-5-3總產率(TY)應答分析值 53
4-5-4包覆率(EE)應答分析值 54
4-5-5回收率(R)應答分析值 55
4-5-6 RSM的預測值與實驗值比較 55
4-6 粒徑分析 58
4-7 電子顯微鏡(SEM)分析 59
第五章 結論 62
參考文獻 68

表目錄
表一、各種化學物質的臨界壓力、溫度和密度 13
表二、HPLC定量葉黃素之檢量線 29
表三、超音波攪拌萃取金盞草萃出物 40
表四、液液萃取 42
表五、溶解度實驗 44
表六、超臨界二氧化碳抗溶沉澱葉黃素酯萃出物預實驗 48
表七、超臨界二氧化碳抗溶沉澱之應答曲面設計實驗數據 50
表八、應答曲面實驗設計的預測值與實驗值比較 57

圖目錄
圖一、實驗流程圖 3
圖二、葉黃素及葉黃素酯結構 5
圖三、三種環狀糊精示意圖 9
圖四、超臨界二氧化碳相圖與臨界點相變圖 12
圖五、二氧化碳的密度-壓力的相圖 12
圖六、原料包裝以及原料 15
圖七、超臨界抗溶沉澱實驗設備圖 23
圖八、HPLC 圖譜 30
圖九、SAS 包覆程序之Tween 80進料量與抗溶溫度應答曲面圖 52
圖十、葉黃素酯萃出物與 β-CD 共沉澱物之粒徑分佈 58
圖十一、金盞草萃出物及液液萃出物 SEM圖 60
圖十二、不同條件下 SAS 沉澱物之 SEM 圖 61
附表目錄
附表一、SAS 溶離率(DR)的變方分析與回歸方程式 63
附表二、SAS 葉黃素濃度(Clut)的變方分析與回歸方程式 64
附表三、SAS 包覆物之總產率(TY)的變方分析與回歸方程式 65
附表四、SAS包覆率(EE)的變方分析與回歸方程式 66
附表五、SAS 回收率(R)的變方分析與回歸方程式 67





Albert, G. I., Hoeller, U., Schierle, J., Neuringer, M., Johnson, E. J., & Schalch, W. (2008). Metabolism of lutein and zeaxanthin in rhesus monkeys: identification of (3R, 6′ R)-and (3R, 6′ S)-3′-dehydro-lutein as common metabolites and comparison to humans. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(1), 70-78.
Anirudhan, T., Nair, A. S., & Nair, S. S. (2016). Enzyme Coated Beta-Cyclodextrin for Effective Adsorption and Glucose-Responsive Closed-Loop Insulin Delivery. International Journal of Biological Macromolecules, 91, 818-827
Astray, G., Cid, A., García-Río, L., Lodeiro, C., Mejuto, J., Moldes, O., & Morales, J. (2010). Cyclodextrin-surfactant mixed systems as reaction media. Progress in Reaction Kinetics and Mechanism, 35(2), 105-129.
Atila, C., Yıldız, N., & Çalımlı, A. (2010). Particle size design of digitoxin in supercritical fluids. The Journal of Supercritical Fluids, 51(3), 404-411.
BCC, R. (2015). The Global Market for Carotenoids. http://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global-market-report-fod025e.html
Berche, B., Henkel, M., & Kenna, R. (2009). Critical phenomena: 150 years since Cagniard de la Tour. Revista Brasileira de Ensino de Física, 31(2), 2601-2604.
Bernstein, P. S., Khachik, F., Carvalho, L. S., Muir, G. J., Zhao, D.-Y., & Katz, N. B. (2001). Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Experimental eye research, 72(3), 215-223.
Brewster, M. E., & Loftsson, T. (2007). Cyclodextrins as pharmaceutical solubilizers. Advanced drug delivery reviews, 59(7), 645-666.
Britton, G., & Khachik, F. (2009). Carotenoids in food Carotenoids (pp. 45-66): Springer.
Ciobanu, A., Landy, D., & Fourmentin, S. (2013). Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Research International, 53(1), 110-114.
Ciobanu, A., Mallard, I., Landy, D., Brabie, G., Nistor, D., & Fourmentin, S. (2012). Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydrate polymers, 87(3), 1963-1970.
Cortés, C., Torregrosa, F., Esteve, M. J., & Frígola, A. (2006). Carotenoid profile modification during refrigerated storage in untreated and pasteurized orange juice and orange juice treated with high-intensity pulsed electric fields. Journal of agricultural and food chemistry, 54(17), 6247-6254.
Davidov-Pardo, G., Gumus, C. E., & McClements, D. J. (2016). Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food chemistry, 196, 821-827.
de Paz, E., Martín, Á., Duarte, C. M., & Cocero, M. J. (2012). Formulation of β-carotene with poly-(ε-caprolactones) by PGSS process. Powder technology, 217, 77-83.
de Quirós, A. R.-B., & Costa, H. S. (2006). Analysis of carotenoids in vegetable and plasma samples: A review. Journal of Food Composition and Analysis, 19(2), 97-111.
Del Valle, E. M. (2004). Cyclodextrins and their uses: a review. Process biochemistry, 39(9), 1033-1046.
Deng, Y., Pang, Y., Guo, Y., Ren, Y., Wang, F., Liao, X., & Yang, B. (2016). Host-guest inclusion systems of daidzein with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD): Preparation, binding behaviors and water solubility. Journal of Molecular Structure, 1118, 307-315.
Fernández-García, E., Carvajal-Lérida, I., Jarén-Galán, M., Garrido-Fernández, J., Pérez-Gálvez, A., & Hornero-Méndez, D. (2012). Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International, 46(2), 438-450.
Garti, N. (1999). What can nature offer from an emulsifier point of view: trends and progress? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152(1), 125-146.
Gould, S., & Scott, R. C. (2005). 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food and Chemical Toxicology, 43(10), 1451-1459.
Griffin, W. C. (1946). Classification of surface-active agents by" HLB". J Soc Cosmetic Chemists, 1, 311-326.
Griffin, W. C. (1955). Calculation of HLB values of non-ionic surfactants. Am Perfumer Essent Oil Rev, 65, 26-29.
Hezave, A. Z., Aftab, S., & Esmaeilzadeh, F. (2010). Micronization of creatine monohydrate via Rapid Expansion of Supercritical Solution (RESS). The Journal of Supercritical Fluids, 55(1), 316-324.
Hsu, Y.-W., Tsai, C.-F., Chen, W.-K., Ho, Y.-C., & Lu, F.-J. (2011). Determination of lutein and zeaxanthin and antioxidant capacity of supercritical carbon dioxide extract from daylily (Hemerocallis disticha). Food chemistry, 129(4), 1813-1818.
Hu, D., Lin, C., Liu, L., Li, S., & Zhao, Y. (2012). Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. Journal of Food Engineering,109(3),545-552.
Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., . . . Xia, T. (2016). Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy, 175, 82-90
Khachik, F. (2009). Process for isolation, purification, and recrystallization of lutein from saponified marigold oleoresin and uses thereof: Google Patents.
Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a review. Journal of Dispersion Science and Technology, 30(9), 1363-1383.
Lin, J.-H., Lee, D.-J., & Chang, J.-S. (2015). Lutein in specific marigold flowers and microalgae. Journal of the Taiwan Institute of Chemical Engineers, 49, 90-94.
Loftsson, T., & Duchêne, D. (2007). Cyclodextrins and their pharmaceutical applications. International journal of pharmaceutics, 329(1), 1-11.
Loh, G. O. K., Tan, Y. T. F., & Peh, K. K. (2016). Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian Journal of Pharmaceutical Sciences.11(4), 536-546
Ma, L., & Lin, X. M. (2010). Effects of lutein and zeaxanthin on aspects of eye health. Journal of the Science of Food and Agriculture, 90(1), 2-12.
McClements, D. J., & Gumus, C. E. (2016). Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in colloid and interface science.
Mein, J. R., Dolnikowski, G. G., Ernst, H., Russell, R. M., & Wang, X.-D. (2011). Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′, 10′-monooxygenase. Archives of biochemistry and biophysics, 506(1), 109-121.
Miguel, F., Martín, A., Mattea, F., & Cocero, M. (2008). Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification, 47(9), 1594-1602.
Millao, S., & Uquiche, E. (2016). Extraction of of oil and carotenoids from pelletized microalgae using supercritical carbon dioxide. The Journal of Supercritical Fluids,116, 223-231.
Moriwaki, C., Mangolim, C. S., Ruiz, G. B., de Morais, G. R., Baesso, M. L., & Matioli, G. (2014). Biosynthesis of CGTase by immobilized alkalophilic bacilli and crystallization of beta-cyclodextrin: effective techniques to investigate cell immobilization and the production of cyclodextrins. Biochemical Engineering Journal, 83, 22-32.
Mutsokoti, L., Panozzo, A., Van Loey, A., & Hendrickx, M. (2016). Carotenoid transfer to oil during thermal processing of low fat carrot and tomato particle based suspensions. Food Research International, 86, 64-73.
Palumpitag, W., Prasitchoke, P., Goto, M., & Shotipruk, A. (2011). Supercritical carbon dioxide extraction of marigold lutein fatty acid esters: Effects of cosolvents and saponification conditions. Separation Science and Technology, 46(4), 605-610.
Prado-Cabrero, A., Beatty, S., Stack, J., Howard, A., & Nolan, J. M. (2016). Quantification of zeaxanthin stereoisomers and lutein in trout flesh using chiral high-performance liquid chromatography-diode array detection. Journal of Food Composition and Analysis, 50, 19-22.
Ran, Y., Zhao, L., Xu, Q., & Yalkowsky, S. H. (2001). Solubilization of cyclosporin A. Aaps Pharmscitech, 2(1), 23-26.
Reverchon, E., & Della Porta, G. (1999). Production of antibiotic micro-and nano-particles by supercritical antisolvent precipitation. Powder technology, 106(1), 23-29.
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods: ILSI press Washington, DC.
Rossmann, M., Braeuer, A., Leipertz, A., & Schluecker, E. (2013). Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. The Journal of Supercritical Fluids, 82, 230-237.
Roy, P., Das, S., Bera, T., Mondol, S., & Mukherjee, A. (2010). Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. International journal of nanomedicine, 5(1), 1113-1121.
Sajilata, M., Singhal, R., & Kamat, M. (2008). The carotenoid pigment zeaxanthin—a review. Comprehensive reviews in food science and food safety, 7(1), 29-49.
Sapkale, G., Patil, S., Surwase, U., & Bhatbhage, P. (2010). Supercritical fluid Extraction-A review. IJCS, 8(2), 729-743.
Schiedt, K., & Liaaen-Jensen, S. (1995). Isolation and analysis. Carotenoids, 1, 81-108.
Sechrist, J., Pachuski, J., & Sherma, J. (2002). Quantification of lutein in dietary supplements by reversed-phase high-performance thin-layer chromatography with visible-mode densitometry. Acta Chromatographica, 151-158.
Socaciu, C. (2007). Food colorants: chemical and functional properties: CRC Press.
Sone, M., Uchiyama, H., & Chang, T.-F. M. (2013). Crystal Growth by Electrodeposition with Supercritical Carbon Dioxide Emulsion: INTECH Open Access Publisher. DOI: 10.5772/54070
Srinivasan, K., & Stalin, T. (2014). Study of inclusion complex between 2, 6-dinitrobenzoic acid and β-cyclodextrin by 1 H NMR, 2D 1 H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 105-115.
Tan, T. B., Yussof, N. S., Abas, F., Mirhosseini, H., Nehdi, I. A., & Tan, C. P. (2016). Forming a lutein nanodispersion via solvent displacement method: The effects of processing parameters and emulsifiers with different stabilizing mechanisms. Food chemistry, 194, 416-423.
Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., . . . Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food chemistry, 174, 502-508.
Tavares Cardoso, M. A., Antunes, S., van Keulen, F., Ferreira, B. S., Geraldes, A., Cabral, J., & Palavra, A. M. (2009). Supercritical antisolvent micronisation of synthetic all‐trans‐β‐carotene with tetrahydrofuran as solvent and carbon dioxide as antisolvent. Journal of Chemical Technology and Biotechnology, 84(2), 215-222.
Uchida, H., Nishijima, M., Sano, K., Demoto, K., Sakabe, J., & Shimoyama, Y. (2015). Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. The Journal of Supercritical Fluids, 105, 128-135.
Van den Berg, H., Faulks, R., Granado, H. F., Hirschberg, J., Olmedilla, B., Sandmann, G., . . . Stahl, W. (2000). The potential for the improvement of carotenoid levels in foods and the likely systemic effects. Journal of the Science of Food and Agriculture, 80(7), 880-912.
Wu, J.-J., Hong, S.-E., Wang, Y.-C., Hsu, S.-L., & Chang, C.-M. J. (2012). Microalgae cultivation and purification of carotenoids using supercritical anti-solvent recrystallization of CO 2+ acetone solution. The Journal of Supercritical Fluids, 66, 333-341.
Yuan, C., Du, L., Zhang, G., Jin, Z., & Liu, H. (2016). Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel. Food chemistry, 210, 600-605.
Yun, J.-H., Lee, H.-Y., Asaduzzaman, A., & Chun, B.-S. (2013). Micronization and characterization of squid lecithin/polyethylene glycol composite using particles from gas saturated solutions (PGSS) process. Journal of Industrial and Engineering Chemistry, 19(2), 686-691.
Zhou, H. Y., Wang, Z. Y., Duan, X. Y., Jiang, L. J., Cao, P. P., Li, J. X., & Li, J. B. (2016). Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel. Biochemical Engineering Journal, 111, 100-107.
Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L. C., Elnashaie, S. S., & Pendashteh, A. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 170, 377-407.
行政院衛生署, 食品添加物使用範圍及限量暨規格標準 -8添加劑,中華民國97年12月27日衛署食字第0991304034號令修正。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔