(35.175.212.130) 您好!臺灣時間:2021/05/18 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:曾宥蓁
研究生(外文):Yu-Chen Tseng
論文名稱:純錫與電鍍鎳於異向性碲化鉍基材及鎳箔之界面反應
論文名稱(外文):Interfacial Reactions of Pure Sn on Ni-coated Anisotropic Bi2Te3 Substrate and Ni Foil
指導教授:陳志銘陳志銘引用關係
口試委員:竇維平何政恩
口試日期:2016-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:界面反應碲化鉍
外文關鍵詞:Interfacial reactionsNiSnBi2Te3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
熱電材料是一種能夠將熱與電兩種不同型態的能量互相轉換的功能性半導體材料,在能源短缺的現代社會中具備了極大的應用與發展空間。其中碲化鉍(Bi2Te3)是一種能在中低溫下擁有高熱電轉換效率,被視為最具有應用價值的熱電材料之一,近年來對碲化鉍的研究著重於提高其熱電優值(figure-of-merit)以及對應之製備方法,僅少數探討組裝成熱電晶片後所面臨之封裝製程問題。然而,熱電模組的設計上,由多組的p型及n型熱電材料,利用銲料將之與銅基板串連而成,已有文獻指出銲料中的Sn與碲化鉍中的Te元素反應極容易生成SnTe介金屬化合物(intermetallic compound, IMC),因SnTe為多孔性結構,機械性質較差,相關的銲點可靠度問題將是影響熱電裝置使用壽命,以及在實際應用時熱電轉換效率的重要因素。
  本研究以目前最常被用來製造熱電材料之區域重熔技術製成的塊材p型及n型Bi2Te3基材上電鍍一層鎳層作為擴散阻障層,並與純錫銲料進行200°C固-固反應。由實驗結果發現,接合界面生成之Ni3Sn4厚度在不同方向之Bi2Te3基材的厚度差異不大,在p型及n型Bi2Te3垂直及平行面的系統中,可以觀察到IMC的型態為相似,因此可利用鎳層的擴散阻障效果進而阻擋碲化鉍層狀結構對銲料的效應,但長時間反應下,鎳層對於平行及垂直接合的p型Bi2Te3還有阻擋擴散之能力,反之n型Bi2Te3上的鎳層消耗較快,其因鎳本身擴散進Bi2Te3基材發生反應,生成NiTe相,因此電鍍鎳層在n型Bi2Te3反應偶中並非良好之擴散阻障層。
  比較不同鎳的製程發現特別的現象,純錫與鎳箔及電鍍鎳的界面反應差異甚大,以鎳層晶粒觀察,電鍍鎳以{0 0 1}為主,鎳箔則為{1 1 1}面,鎳箔上的界面反應明顯比電鍍鎳劇烈,IMC厚度成長隨時間增加而增厚,經由計算反應級數(n),求得n=0.43,鎳箔與錫反應偏向擴散控制,Ni3Sn4晶粒呈現細長型,反之電鍍鎳系統則為多面晶體且較大晶粒的型態,而n值落於0.23-0.33區間內以熟化控制為主,且發現Ni3Sn4晶粒以不同軸向呈現會影響錫與鎳間的擴散。由此可知,本研究所電鍍出的鎳層在作為擴散阻障層的功效上有優勢。


Thermoelectric (TE) materials are functional semiconductors that have numerous applications for our current society suffering from energy shortage because they can convert heat to electricity. Bismuth telluride (Bi2Te3) is a well-known TE material for its high conversion efficiency at room temperature. Much effort has been devoted for improving the figure-of-merit of TE materials, but only few studies exploited the solder joint reactions in TE module which can provide fundamental information for assessing the reliability of packaging process
In this research, we utilized zone-melted Bi2Te3 substrates that the bulk p-type and n-type Bi2Te3 substrates was electroplated with a nickel layer as a diffusion barrier layer to join with pure Sn solder in a direction perpendicular or parallel to layer direction of substrate. The results of solid - solid reaction at 200° C show that the morphology and thickness of grown Ni3Sn4 in both directions were similar. However, the Ni layer on n-type Bi2Te3 was quickly consumed because the Ni diffuses into the substrate to form NiTe phase during the long-term aging time. In contrast, the Ni layer on p-type Bi2Te3 was shown as a great diffusion barrier layer.
Furthermore, the source of Ni also plays an important role. Ni foil and electroplated Ni shows considerably different results for the interfacial reaction. The preferential orientation of the resulting Ni grains were {0 0 1} and {1 1 1} for electroplated Ni and Ni foil, respectively. The Sn trends to react with Ni foil through diffusion-limited reaction and thus form elongated Ni3Sn4 grains. In contrast, the ripening-limited reaction occurred for electroplated Ni, resulting in large grains. The experimental data from this study show that the electroplated Ni possesses great advantages serve as a diffusion barrier layer.


目錄
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1前言 1
1.2研究目的 1
第二章 文獻回顧 3
2.1熱電材料介紹 3
2.1.1三大熱電轉化效應 4
2.1.2熱電轉換效率 6
2.1.3碲化鉍系(Bi2Te3)熱電材料 8
2.2熱電材料之製備方法與結構特徵 10
2.2.1塊材結構之熱電材料製備 10
2.2.2奈米結構之熱電材料 15
2.2.3火花電漿燒結技術於熱電材料 18
2.3界面反應 20
2.3.1銲料於熱電材料之界面反應 20
2.3.2擴散阻障層對銲料及熱電材料之界面反應 26
2.3.3鎳與錫之界面反應 29
第三章 實驗方法 34
3.1材料製備 34
3.1.1 Bi2Te3熱電材料 34
3.1.2基材切割 35
3.2阻障層製備 35
3.3 Bi2Te3熱電材料與銲料之界面反應 37
3.4試片分析 38
第四章 結果與討論 40
4.1電鍍鎳於異向性碲化鉍基材與純錫銲料界面反應 40
4.1.1基材結構及特性 40
4.1.2電鍍鎳層組成及結構分析 41
4.1.3電鍍鎳於Bi2Te3與Sn銲料之界面反應 50
4.2鎳箔基材及電鍍鎳層與純錫銲料界面反應 57
4.2.1鎳箔與電鍍鎳基材之結構分析 57
4.2.2鎳箔及電鍍鎳基材與純錫銲料之界面反應 61
4.3界面反應動力學比較 71
結論 74
參考文獻 75

[1]S. Jacobsson and A. Johnson, “The diffusion of renewable energy technology: an analytical framework and key issues for research”, Energy Policy, Vol. 28, pp. 625-640 (2000).
[2]Y. Zhang, X. Jia, L. Deng, X. Guo, H. Sun, B. Sun, B. Liu, and H. Ma, ” Evolution of thermoelectric properties and anisotropic features of Bi2Te3prepared by high pressure and high temperature”, Journal of Alloys and Compounds, Vol. 632, pp. 514-519 (2015).
[3]S. W. Chen and C. N. Chiu, “Unusual cruciform pattern interfacial reactions in Sn/Te couples”, Scripta Materialia, Vol. 56, pp. 97-99 (2007).
[4]M. Zebarjadi, K. Esfarjadi, M. S. Dresselhaus, Z. F. Ren and G. Chen, “Perspectives on thermoelectrics: From fundamentals to device applications”, Energy & Environmental Science, Vol. 5, pp. 5147-5162 (2012).
[5]D. M. Rowe, Ed. “CRC Handbook of Thermoelectrics”, CRC Press Boca Raton, FL, (1995).
[6]吳人潔,「複合材料」,新文京,第484-485頁(2004)。
[7]朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,第78-89頁(2004)。
[8]黃振東、除振庭,「熱電材料」,科學發展期刊,第486期,第48-53頁(2013)。
[9]Terry M. Tritt, “Holey and Unholey Semiconductors”, Science, Vol. 283, pp. 804-805 (1999).
[10]M. R. Bravo, A. Moure, J. F. Fernandez and M. M. Gonzalez, “Skutterudites as thermoelectric materials: revisited”, Royal Soc Chemistry Advances, Vol. 5, pp. 41653-41667 (2015)
[11]H. J. Goldsmid, “Introduction to thermoelectricity”, R. Hull, R. M. O. Jr., J. Parisi and H. Warlimont, Springer Verlag, Germany, pp. 1-97 (2009).
[12]Sabanh K. Bux, J. P. Fleurial and Richard B. Kaner, “Nanostructured materials for thermoelectric applications”, Chemical Communications, Vol. 46, pp. 8311-8324 (2010).
[13]G.J. Snyder, E.S. Toberer, “Complex thermoelectric materials”, Nature Materials, Vol. 7, pp. 105-114 (2008).
[14]D.M. Rowe and G. Min, “Alpha-plot in sigma-plot as a thermoelectric-material performance indicator”, Journal of Materials Science Letters, Vol. 14, pp. 617-619 (1995).
[15]D. Teweldebrhan, V. Goyal, M. Rahman and A. Balandin, “Atomically-thin crystalline films and ribbons of Bismuth Telluride”, Applied Physics Letters, Vol. 96, pp. 0513107 (2010).
[16]H. J. Noh, H. Koh, S. J. Oh and J. H. Park, “Spin-orbit interaction effect in the electronic structure of observed by angle-resolved photoemission spectroscopy”, A Letters Journal Exploring the Frontiers of Physics, Vol. 81, pp. 57006 (2008).
[17]施孝東,「電鍍碲化鉍之片狀結構成長機制研究」,碩士論文,清華大學材料科學與工程學系,新竹(2009)。
[18]Joseph R. Sootsman, Duck Young Chung and Mercouri G. Kanatzidis, “New and old concepts in thermoelectric materials”, Angewandte Chemie International Edition, Vol. 48, pp. 8616-8639 (2009).
[19]Z. J. Xu, L. P. Hu, P. J. Ying, X. B. Zhao and T. J. Zhu, “Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation”, Acta Materialia, Vol. 84, pp. 385-392 (2015).
[20]J. Jianga, L. Chen, S. Bai, Q. Yao and Q. Wang, “Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting”, Journal of Crystal Growth, Vol. 277, pp. 805-809 (2005).
[21]H. P. Ha, D. B. Hyun, J. Y. Byun, Y. J. Oh and E. P. Yoon, “Enhancement of the yield of high-quality ingots in the zone-melting growth of p-type bismuth telluride alloys”, Journal of Materials Science, Vol. 37, pp. 4691-4696 (2002).
[22]Y. R. Chen, W. S. Hwang, H. L. Hsieh, J. Y. Huang, T. K. Huang and J. D. Hwang,“Thermal and microstructure simulation of thermoelectric material Bi2Te3 grown by zone-melting technique”, Journal of Crystal Growth, Vol. 402, pp. 273-284 (2014).
[23]C. C. Li, Z. X. Zhu, L. L. Liao, M. J. Dai, C. K. Liu and C. R. Kao, “Assembly of N-type Bi2(Te,Se)3 thermoelectric modules by low temperature bonding”, Science and Technology of Welding and Joining, Vol. 18, pp. 421-424 (2013).
[24]A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy & Environmental Science, Vol.2, pp.466-479(2009).
[25]B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D.Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys”, Science, Vol. 320, pp. 634-638 (2008).
[26]Z. G. Chen, G. Han, L. Yang, L. Cheng and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge”, Progress in Natural Science: Materials International, Vol. 22, pp. 535-549 (2012).
[27]周雅文,「工業材料雜誌」,第287期(2010)。
[28]Y. Pan, T. R. Wei, Q. Cao and J. F. Li,“Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering”, Materials Science and Engineering B, Vol. 197, pp. 75-81 (2015).
[29]S. W. Chen and C. N. Chiu, “Unusual cruciform pattern interfacial reactions in Sn/Te couples”, Scripta Materialia, Vol. 56, pp. 97-99 (2007).
[30]C. N. Chiu, C. H. Wang and S. W. Chen, “Interfacial reactions in the Sn-Bi/Te couples”, Journal of Electronic Materials, Vol. 27, pp. 40-44 (2008).
[31]C. H. Lee, W. T. Chen and C. N. Liao, “Effect of antimony on vigorous interfacial reaction of Sn–Sb/Te couples”, Journal of Alloys and Compounds, Vol. 509, pp. 5142-5146 (2011).
[32]C. N. Liao and Y. C. Huang, “Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium”, Journal of Materials Research, Vol. 25, pp. 391-395 (2010).
[33]L. Sheri, G. xu, R. Zhao and F. Guo, “Interfacial reaction between the thermopile materials and eutectic Sn-Based solders”, International Conference on Electronic Packaging Technology & High Density Packaging, pp. 1-4 (2011).
[34]S.W. Chen, C. Y. Wu, H. J. Wu and W. T. Chiu, “Interfacial reactions in Sn/Bi2Te3, Sn/Bi2Se3 and Sn/Bi2(Te1-xSex)3 couples”, Journal of Alloys and Compounds, Vol. 611, pp. 313-318 (2014).
[35]S. Ye, J. D. Hwang and C. M. Chen, “Strong anisotropic effects of p-type Bi2Te3 element on the Bi2Te3/Sn interfacial reactions”, Metallurgical and Materials Transactions A, Vol. 46, pp. 2372-2375 (2015).
[36]D. R. Lid, “CRC handbook of chemistry and physics”, CRC Press Boca Raton, Florida,(2009).
[37]W. P. Lin, P. J. Wang and C. C. Lee, “Bonding/barrier layers on bismuth telluride (Bi2Te3) for high temperature applications”, Electronic Components and Technology Conference (2010).
[38]Y. C. Lan, D. Z. Wang, G. Chen and Z. F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials”, Applied Physics Letters, Vol. 92, pp. 101910-3 (2008).
[39]J. A. V. Beek, S. A. Stolk and F. J. J. V. Loo, “Multiphase diffusion in the systems Fe-Sn and Ni-Sn”, Zeitschrift Fur Metallkunde, Vol.73, pp.439 (1982).
[40]C. H. Wang and J. L. Liu, “Effects of Sn thickness on morphology and evolution of Ni3Sn4 grains formed between molten Sn and Ni substrate”, Intermetallics, Vol. 61, pp. 9-15 (2015).
[41]J. Shen, Y. C. Chan and S. Y. Liu, “Growth mechanism of Ni3Sn4 in a Sn/Ni liquid/solid interfacial reaction”, Acta Materialia, Vol. 57, pp. 5196-5206 (2009).
[42]C. S. Barrett and T. B.Massalski, “Structure of Metals”, Pergamon, Oxford, p.204 (1980).
[43]J Seymour Ed., “Physical Electronics”, chapter 2, Pitman (1972).
[44]W. K. Liao, C. M. Chen, M. T. Lin and C. H.Wang, “Enhanced growth of the Ni3Sn4 phase at the Sn/Ni interface subjected to strains”, Scripta Materialia, Vol. 65, pp. 691-694 (2011).
[45]O. Yamashita, S. Tomiyoshi and K. Makita, “Bismuth telluride compounds with high thermoelectric figures of merit”, Journal of Applied Physics, Vol. 93, pp. 368-374 (2003).
[46]A. Lis, C. Kenel and C. Leinenbach, “Characteristics of reactive Ni3Sn4 formation and growth in Ni-Sn interlayer systems”, Metallurgical and Materials Transactions A, Vol. 47, pp. 2596-2608 (2016).
[47]P. M. Agrawal, B. M. Rice and D. L. Thompson, “Predicting trends in rate parameters for self-diffusion on FCC metal surfaces”, Surface Science, Vol. 515, pp. 21-35 (2002).
[48]黃怡婷,「微銲點受電遷移影響之界面生長機制及晶向分析」,博士論文,中央大學化學工程與材料工程學系,桃園(2016)。
[49]C. E. Ho, P. T. Lee, C. N. Chen and C. H. Yang, “Electromigration in 3D-IC scale Cu/Sn/Cu solder joints”, Journal of Alloys and Compounds, Vol. 676, pp. 361-368 (2016).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top