跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王舶紘
研究生(外文):Po-Hung Wang
論文名稱:酞菁核星狀高分子:可控合成以及其自組裝特性應用於電子元件
論文名稱(外文):Phthalocyanine-cored star-shaped polymers: Controlled syntheses and self-assembly toward optoelectronic applications
指導教授:黃智峯
指導教授(外文):Chih-Feng Huang
口試委員:蔣酉旺林慶炫
口試委員(外文):Yeo-Wan ChiangChing-Hsuan Lin
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:92
中文關鍵詞:酞菁原子轉移自由基聚合星狀聚合物拓樸結構OFET記憶體奈米浮閘
外文關鍵詞:PhthalocyaineATRPStar polymerTopologyOFET memoryNano-floating gate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來有機記憶元件由於具有可撓曲、尺寸與材料結構多樣化等優勢,受到廣泛關注。一個典型的有機電晶體式記憶體元件是浮動閘極記憶體。在這種元件當中,載子被儲存在金屬抑或是半導體則被稱作浮動閘極,位於絕緣介電層內,並且完全由絕緣體包圍。然而,浮動閘極結構對記憶體的影響尚未有系統性的研究。在此論文中,我們將控制浮動閘極在介電層中的濃度並觀察其影響。
我們使用arm-first的方式來製備具有功能性中心為核的酞菁核中心的星狀高分子。首先將製備出具有酞菁末端的前驅物,帶有ATRP起始點的官能基,接著以原子轉移自由基聚合反應(Atom transfer radical polymerization (ATRP))與苯乙烯單體聚合成有酞菁末端的直鏈型高分子(Pn-PS)。此技術讓我們可以有效地控制支鏈聚合物的長度,因此我們製備了幾種不同分子量的高分子。並以此直鏈型高分子(Pn-PS)與金屬離子(鋅、銅)進行環化反應,藉此合成出以酞菁核中心的星狀高分子(CuPc-PS4、ZnPc-PS4)。我們合成出的酞菁核中心的星狀高分子在溶劑和形成薄膜後展現了獨特的堆疊結果,此現象將可以被利用來做有機記憶體元件。
而使用CuPc-PS4和ZnPc-PS4的有機電晶管式記憶體(OFET memory)呈現了顯著的電洞捕捉特性,並且用有著106不錯的記憶體ON/OFF電流比,以及大於105秒的耐久度,可以作為可以有效的運用重複寫入及消除的快閃記憶體。較為特別的是,我們透過調控酞菁核星狀高分子的側鏈長度來控制以π-π作用力在高分子介電質中作為奈米浮閘酞菁核的濃度,也藉此改變了記憶體元件的記憶區間及耐久度。而此酞菁核星狀高分子則可成為不錯的奈米浮閘選擇來作為有機電晶管式記憶體。


Organic-based memory devices have received extensive scientific interest due to their advantages of flexibility, scalability, and material variety. A typical type of charge-trapping OFET memory is organic floating-gate memory. In OFET device, charges are stored in a metal or in a semiconducting layer called a floating gate, located within the insulating gate dielectric, and completely surrounded by insulator. However, there is no systematic study on the above structure effects. In this thesis, we’ll control the concentration of floating gate in the dielectric layer, and investigate the effect of the device.
We have developed a facile synthetic route to star-shaped polymers featuring a metal complex of phthalocyanine (MPc) core by arm-first method using combination of atom transfer radical polymerization (ATRP) and cyclization reaction with metal ions. A phthalonitrile with an ATRP initiating group was firstly synthesized, followed by polymerization of styrene to obtain a phthalonitrile-bearing polystyrene (Pn-PS). We prepared Pn-PS with three different molecular weights using ATRP to control the lengths of the arms of resulting star polymers. Pc-cored four-armed star-shaped polymers with metal centers of copper or zinc, CuPc-PS4 and ZnPc-PS4, were synthesized via cyclization of Pn-PS with metal ions of Cu2+ or Zn2+ under the presence of base. Resulting MPc-cored star-shaped polymers showed unique aggregation behaviors in solvents and film states, which can be utilized in optoelectronic applications such as organic memory devices.
The OFET memory device employing CuPc-PS4, ZnPc-PS4 shows significant hole-trapping characteristics with a high memory ON/OFF current ratio of 106, long retention ability of over 105 s, which is attributed to a flash-type memory. Especially, we try to modify the polymer chain length of phthalocyanine-core star-shape polymer to control the concentration of phthalocyanine core which form nano-floating gate by π-π interaction in the polymer matrix, also change the memory window and retention time of those memory device. The novel polymer design is a promising candidate for nano floating gates in nonvolatile OFET memory.


目錄
第一章 緒論 1
第二章 文獻回顧與研究動機 3
2.1 有機電子記憶體分類 3
2.1.1 揮發性及非揮發性有機記憶體 3
2.2 以結構分類有機記憶體 4
2.2.1 電容型(capacitor-type)記憶體 4
2.2.2 電阻型(resistor-type)記憶體 5
2.2.3 電晶管型(transistor-type)記憶體 6
2.3 有機場效記憶體工作原理 9
2.4 電荷儲存機制 10
2.5 奈米浮閘介電質 12
2.6 活性自由基聚合(Living radical polymerization) 14
2.6.1 活性自由基聚合概述 14
2.6.2 可控/活性自由基聚合(Control/living radical polymerization,CRP) 15
2.7 原子轉移自由基聚合(Atom Transfer Radical Polymerization,ATRP) 18
2.8 材料選擇 25
2.8.1 預測有機場效電晶管型(OFET)記憶體的性能 25
2.8.2 酞菁(Phthalocyanine) 26
2.9 研究動機 28
2.9.1 酞菁核星狀高分子用於有機場效電晶管型記憶體 28
第三章 實驗 29
3.1 藥品 29
3.2 儀器 31
3.3 實驗步驟 33
3.3.1 合成phthalonitrile initiator (Pn-OH) 33
3.3.2 合成phthalonitrile initiator (Pn-i) 34
3.3.3 使用phthalonitrile initiator Pn-i進行苯乙烯ATRP聚合反應 35
3.3.4 合成MPc-PS4. 36
3.3.5 合成ZnPc. 37
第四章 結果討論 38
4.1 Pn-i起始劑結構鑑定 38
4.2 以phthalonitrile initiator,Pn-i進行苯乙烯的ATRP聚合反應 40
4.3 聚合星狀高分子MPc-PS4 47
4.4 合成ZnPc 52
4.5 UV & SAX分析 54
4.6 有機場效電晶管特性 (OFET device) 65
4.7 材料表面分析 67
4.8 有機場效電晶管型記憶體特性 (Memory Device) 73
第五章 結論 88
第六章 參考文獻 90



[1] I. W. Moran, A. L. Briseno, S. Loser and K. R. Carter, Chemistry of Materials 2008, 20, 4595-4601.
[2] H. Wang, Z. Ji, M. Liu, L. Shang, G. Liu, X. Liu, J. Liu and Y. Peng, Science in China Series E: Technological Sciences 2009, 52, 3105-3116.
[3] U. Zschieschang, H. Klauk, M. Halik, G. Schmid and C. Dehm, Advanced Materials 2003, 15, 1147-1151.
[4] J. C. Ribierre, S. Watanabe, M. Matsumoto, T. Muto and T. Aoyama, Applied Physics Letters 2010, 96, 083303.
[5] X.-H. Zhang and B. Kippelen, Applied Physics Letters 2008, 93, 133305.
[6] H. Wang, Y. Peng, Z. Ji, M. Liu, L. Shang and X. Liu, Chinese Science Bulletin 2011, 56, 1325-1332.
[7] Y. C. Lai, T. Kurosawa, T. Higashihara, M. Ueda and W. C. Chen, Chem Asian J 2013, 8, 1514-1522.
[8] W.-Y. Lee, T. Kurosawa, S.-T. Lin, T. Higashihara, M. Ueda and W.-C. Chen, Chemistry of Materials 2011, 23, 4487-4497.
[9] Y.-H. Chou, S. Takasugi, R. Goseki, T. Ishizone and W.-C. Chen, Polymer Chemistry 2014, 5, 1063-1071.
[10] A.-D. Yu, T. Kurosawa, M. Ueda and W.-C. Chen, Journal of Polymer Science Part A: Polymer Chemistry 2014, 52, 139-147.
[11] Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Progress in Polymer Science 2008, 33, 917-978.
[12] P. Heremans, G. H. Gelinck, R. Müller, K.-J. Baeg, D.-Y. Kim and Y.-Y. Noh, Chemistry of Materials 2011, 23, 341-358.
[13] J. Jakabovič, J. Kováč, M. Weis, D. Haško, R. Srnánek, P. Valent and R. Resel, Microelectronics Journal 2009, 40, 595-597.
[14] S. Moller, C. Perlov, W. Jackson, C. Taussig and S. R. Forrest, Nature 2003, 426, 166-169.
[15] J. C. Scott and L. D. Bozano, Advanced Materials 2007, 19, 1452-1463.
[16] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, T. Yamada and S. Streiffer, Journal of Applied Physics 2006, 100, 051606.
[17] H.-C. Chang, C.-L. Liu and W.-C. Chen, Advanced Functional Materials 2013, 23, 4960-4968.
[18] K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus and D.-Y. Kim, Advanced Functional Materials 2010, 20, 224-230.
[19] H.-C. Wu, C.-L. Liu and W.-C. Chen, Polymer Chemistry 2013, 4, 5261-5269.
[20] Y.-H. Chou, H.-C. Chang, C.-L. Liu and W.-C. Chen, Polymer Chemistry 2015, 6, 341-352.
[21] M. Yusuke, Y. Takeshi, A. Atsushi and F. Norifumi, Japanese Journal of Applied Physics 2016, 55, 04EE04.
[22] J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nat Mater 2004, 3, 918-922.
[23] Q.-D. Ling, F.-C. Chang, Y. Song, C.-X. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Journal of the American Chemical Society 2006, 128, 8732-8733.
[24] M. S. KHARASCH, E. V. JENSEN and W. H. URRY, Science 1945, 102, 128.
[25] S. M, Nature 1956, 178, 1168-1169.
[26] W. H. Carothers, Journal of the American Chemical Society 1929, 51, 2548-2559.
[27] G. Odian, 2004.
[28] W. A. Braunecker and K. Matyjaszewski, Progress in Polymer Science 2007, 32, 93-146.
[29] F. Minisci, Accounts of Chemical Research 1975, 8, 165-171.
[30] D. M. Haddleton, C. B. Jasieczek, M. J. Hannon and A. J. Shooter, Macromolecules 1997, 30, 2190-2193.
[31] S. g. n. Brusseau, O. Boyron, C. Schikaneder, C. C. Santini and B. Charleux, Macromolecules 2011, 44, 215-220.
[32] G. Delaittre, J. Rieger and B. Charleux, Macromolecules 2011, 44, 462-470.
[33] R. B. Grubbs, Polymer Reviews 2011, 51, 104-137.
[34] G. Moad, E. Rizzardo and S. H. Thang, Polymer 2008, 49, 1079-1131.
[35] J.-S. Wang and K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614-5615.
[36] J.-S. Wang and K. Matyjaszewski, Macromolecules 1995, 28, 7901-7910.
[37] K. Matyjaszewski and J. Xia, Chemical Reviews 2001, 101, 2921-2990.
[38] B. E. Woodworth, Z. Metzner and K. Matyjaszewski, Macromolecules 1998, 31, 7999-8004.
[39] Matyjaszewski, K.; Spanswick, J. Materials Today 2005, 8, 26-33
[40] F. De Campo, D. Lastecoueres and J.-B. Verlhac, Journal of the Chemical Society, Perkin Transactions 1 2000, 575-580.
[41] K. Matyjaszewski and J. Spanswick, Materials Today 2005, 8, 26-33.
[42] W. Jakubowski, K. Min and K. Matyjaszewski, Macromolecules 2006, 39, 39-45.
[43] K. Satoh, M. Mizutani and M. Kamigaito, Chemical Communications 2007, 1260-1262.
[44] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer,, M. Takamiya, T. Sakurai and T. Someya, Science 2009, 326, 1516-1519.
[45] Y.-C. Chiu, T.-Y. Chen, C.-C. Chueh, H.-Y. Chang, K. Sugiyama, Y.-J. Sheng, A. Hirao and W.-C. Chen, Journal of Materials Chemistry C 2014, 2, 1436-1446.
[46] Z. Bao, A. J. Lovinger and A. Dodabalapur, Applied Physics Letters 1996, 69, 3066-3068.
[47] N. B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function, Cambridge University Press, 1998, p.
[48] K. Sakamoto and E. Ohno-Okumura, Materials 2009, 2, 1127.
[49] E. M. Maya, A. W. Snow, J. S. Shirk, R. G. S. Pong, S. R. Flom and G. L. Roberts, Journal of Materials Chemistry 2003, 13, 1603-1613.
[50] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee and D. Y. Kim, Advanced Materials 2006, 18, 3179-3183.
[51] J. Aimi, C.-T. Lo, H.-C. Wu, C.-F. Huang, T. Nakanishi, M. Takeuchi and W.-C. Chen, Advanced Electronic Materials 2016, 2, 1500300.
[52] J. Aimi, M. Komura, T. Iyoda, A. Saeki, S. Seki, M. Takeuchi and T. Nakanishi, Journal of Materials Chemistry C 2015, 3, 2484-2490.
[53] W.-F. Law, K. M. Lui and D. K. P. Ng, Journal of Materials Chemistry 1997, 7, 2063-2067.
[54] M. Kasha, H. R. Rawls and M. A. El-Bayoumi, Pure and Applied Chemistry 1965, 11, 371-392.
[55] M. T. M. Choi, P. P. S. Li and D. K. P. Ng, Tetrahedron 2000, 56, 3881-3887.
[56] N. Rasouli and N. Sohrabi, Physical Chemistry Research 2016, 4, 83-94.
[57] Y.-W. Lin, C.-J. Lin, Y.-H. Chou, C.-L. Liu, H.-C. Chang and W.-C. Chen, Journal of Materials Chemistry C 2013, 1, 5336-5343.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 新穎氮氧自由基試劑製程改善與氫鍵競爭型嵌段共聚物調控熱固性塑膠奈米結構
2. 以可逆加成斷鍵自由基聚合反應與開環聚合反應合成(雙親性嵌段)共聚高分子及其自組裝之研究
3. 結合原子轉移自由基聚加成反應及可逆加成斷鍵自由基聚合反應合成新穎具酸應答及溫度應答之雙親性高分子刷及其形成之微胞於細胞內藥物釋放之研究
4. 以原子轉移自由基聚加成製備主鏈型聚酯與新穎氮氧自由基試劑之合成
5. 結合原子轉移自由基聚合與硝酮介導自由基偶合反應合成星狀高分子
6. 探討不同種類原子轉移自由基聚加成反應及其脂肪族聚酯產物之官能基化與應用
7. 以活性聚縮合反應精準合成N-取代聚醯苯胺與其非週期性序列可控之研究
8. 奈米纖維素顆粒於接著系統的強化應用研究
9. 以原花青素為還原劑用於鐵催化ATRP與鐵催化ATRPA合成聚酯及製備高分子刷於微胞應用
10. 以鏈成長縮合聚合精準合成N-取代聚醯苯胺及其應用於製備多孔聚醯亞胺材料與高分子序列可控
11. 以TEMPO氧化法調控奈米纖維素改質率於吸附巴拉刈之應用與其結合表面起始ATRP用於製備PMMA奈米複合材料
12. 結合活性聚縮合反應與低溫高效能自由基偶合反應製備三嵌段共聚物以及混臂星狀共聚物
13. 有機商店的關係連結對顧客知覺價值及再惠顧意圖之影響
14. 利用第一原理理論計算研究氧化鈷/鈷介面的磁性結構
15. 製造業服務整合之價值探索