(44.192.66.171) 您好!臺灣時間:2021/05/18 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:毛穎孝
研究生(外文):Ying-Hsiao Mao
論文名稱:以鎳銅合金/氮化鈦複合材料作為直接甲醇燃料電池陽極觸媒之探討
論文名稱(外文):Electrodeposition Nickel-Copper Alloy on Titanium Nitride as Anodic Catalyst in Direct Methanol Fuel Cell
指導教授:蔡毓楨
指導教授(外文):Yu-Chen Tsai
口試委員:吳宗明廖建勛
口試日期:2016-06-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:直接甲醇燃料電池陽極觸媒非鉑金屬非探載體
外文關鍵詞:titanium nitride filmnickel-copper alloydirect methanol fuel cellselectro-catalysts
相關次數:
  • 被引用被引用:1
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電化學沉積法將鎳銅(NiCu)合金奈米觸媒還原於氮化鈦(Titanium nitride,TiN)載體上,製成鎳銅/氮化鈦複合材料(NiCu/ TiN)作為直接甲醇燃料電池陽極材料。與常見玻璃碳電極(Glassy carbone electrode,GCE)相比NiCu/ TiN奈米複合材料確實擁有較高的甲醇電催化活性及較好的穩定性表現。並利用場發射式掃描式電子顯微鏡(Field emission scanning electron microscopy, FE-SEM)與原子力顯微鏡(Atomic force microscope,AFM) 觀察表面形貌差異;利用X-射線繞射分析儀(X-Ray diffractometer,XRD)分析結晶以及X-光能量散譜儀(X-ray energy dispersive spectrometer,EDS)分析組成元素的含量。
將製備完成的鎳銅/氮化鈦陽極觸媒材料(NiCu/ TiN)在0.5 M氫氧化鉀溶液中探討其電化學活性面積;在1 M甲醇和0.5 M氫氧化鉀混合溶液中探討其對甲醇的催化性與長時間穩定性。將其與玻璃碳電極(Glassy carbone electrode,GCE)載體比較,實驗結果得知NiCu/ TiN陽極觸媒材料不僅擁有較大的電催化活性面積及較良好的甲醇電催化活性,再更進一步探討發現NiCu /TiN陽極觸媒材料對甲醇電催化也具有較長時間的穩定性。
改變鎳銅(NiCu)前驅物的濃度比,還原沉積出不同原子比例的鎳銅(NiCu)合金奈米觸媒於氮化鈦(TiN)載體,並在1 M甲醇和0.5 M氫氧化鉀混合溶液中探討其對甲醇的催化性,結果顯示當鎳銅(NiCu)原子比5.6 : 1 時傭有最佳的甲醇電催化活性。


摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 燃料電池簡介 2
1.3.1 燃料電池的發展 2
1.3.2 燃料電池的特點 3
1.3.3 燃料電池的種類 4
1.4 直接甲醇燃料電池 7
1.4.1 直接甲醇燃料電池基本原理 7
1.4.2 直接甲醇燃料電池基本構造 8
1.4.3 甲醇在陽極的反應途徑及毒化問題 9
1.4.4 鹼性直接甲醇燃料電池 11
1.5 直接甲醇燃料電池之陽極觸媒發展 13
1.5.1 非貴金屬陽極電催化觸媒層 13
1.5.1.1 陶瓷氧化物觸媒材料 13
1.5.1.2 過渡金屬族觸媒材料 14
1.5.1.2.1 金屬鎳及鎳合金觸媒材料 15
1.5.1.2.2 金屬銅及銅合金觸媒材料 18
1.5.2 觸媒載體開發 19
1.5.2.1 碳載體 19
1.5.2.1.1 奈米碳管 (Carbon nanotube,CNT) 19
1.5.2.1.2 石墨烯 (Graphene) 20
1.5.2.2 非碳載體 22
1.5.2.2.1 鎳載體 22
1.5.2.2.2 銅載體 23
1.5.2.2.3 沸石觸媒材料(Zeolite) 25
1.5.2.2.4 二氧化鈦奈米管(Titanium dioxide nanotube,TiO2 NT) 27
1.6 氮化鈦(Titanium nitride,TiN) 28
1.6.1 導電氮化鈦薄膜之基本性質 28
1.6.2 導電TiN薄膜之製備及其表面微結構控制 29
1.6.3 氮化鈦之電化學應用 30
1.6.3.1 pH感測器 30
1.6.3.2 燃料電池 30
1.7 電化學原理與方法 32
1.7.1 循環伏安法原理(Cyclic voltammetry, CV) 32
1.7.2 安培法原理(Amperometry) 34
1.8 儀器原理 35
1.8.1 場發射掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM) 35
1.8.2 原子力顯微鏡(Atomic force microscope,AFM) 36
1.8.3 X光線繞射分析儀(X-ray diffraction,XRD) 37
第二章 實驗方法與步驟 38
2.1 實驗藥品 38
2.2 實驗儀器 38
2.3 實驗流程 40
2.3.1 氮化鈦(TiN)的製備 40
2.3.2 電極前處理 41
2.3.3 NiCu/TiN電催化觸媒層電極製備及實驗步驟 42
第三章 結果與討論 45
3.1 TiN薄膜之探討 45
3.1.1 TiN薄膜微觀表面形貌之探討 45
3.1.2 X射線繞射分析(X-ray diffraction,XRD) 47
3.2 NiCu/TiN陽極觸媒材料於甲醇燃料電池的探討 48
3.2.1 電化學沉積鎳、銅、鎳銅及鎳錳於氮化鈦陽極觸媒之製備 48
3.2.2 非鉑金屬觸媒沉積於TiN上對於甲醇氧化探討 50
3.2.3 NiCu/TiN陽極觸媒材料的微結構探討 54
3.2.3.1 原子力顯微鏡(Atomic force microscope,AFM) 54
3.2.3.2 X光能量散譜儀(X-ray energy dispersive spectrometer,EDS) 58
3.2.3.3 場發射式掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM) 60
3.2.4 NiCu/TiN 陽極觸媒材料之電化學特性探討 63
3.2.5 NiCu/TiN 陽極觸媒材料對於甲醇氧化的電活性探討 64
3.2.5.1 不同原子比例組成NiCu的甲醇氧化電活性探討 65
3.2.5.2 不同NiCu沉積庫侖量的甲醇氧化電活性探討 69
3.2.5.3 不同觸媒載體材料的甲醇氧化電活性探討 73
3.2.5.4 不同循環伏安法之掃描速度對於甲醇氧化電活性探討 75
3.2.6 NiCu/TiN陽極觸媒材料穩定性探討 77
第四章 結論及未來展望 78
4.1 結論 79
4.2 未來展望 79
第五章 參考文獻 80



1Arico, A., Srinivasan, S. & Antonucci, V. DMFCs: from fundamental aspects to technology development. Fuel cells 1, 133-161 (2001).
2Chan, K.-Y., Ding, J., Ren, J., Cheng, S. & Tsang, K. Y. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. Journal of Materials Chemistry 14, 505, doi:10.1039/b314224h (2004).
3Iwasita, T. Electrocatalysis of methanol oxidation. Electrochimica Acta 47, 3663-3674 (2002).
4Vuković, M. Voltammetry and anodic stability of a hydrous oxide film on a nickel electrode in alkaline solution. Journal of Applied Electrochemistry 24, 878-882, doi:10.1007/bf00348775.
5Fleischmann, M., Korinek, K. & Pletcher, D. The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. Journal of the Chemical Society, Perkin Transactions 2, 1396-1403, doi:10.1039/P29720001396 (1972).
6Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F. & Mahjani, M. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. International Journal of Hydrogen Energy 33, 4367-4376, doi:10.1016/j.ijhydene.2008.05.075 (2008).
7Larminie, J., Dicks, A. & McDonald, M. S. Fuel cell systems explained. Vol. 2 (Wiley New York, 2003).
8鄭雅堂. 燃料電池發電技術. 汽電共生報導第十四期, 第 17-25 頁, 民國 87 年 (1998).
9Aricò, A. S., Baglio, V. & Antonucci, V. in Electrocatalysis of Direct Methanol Fuel Cells 1-78 (Wiley-VCH Verlag GmbH & Co. KGaA, 2009).
10鄭耀宗 & 徐耀昇. (燃料電池論文集, 1999).
11Giner, J. & Hunter, C. Model of a hydrogen-air fuel cell with alkaline electrolyte. J. Electrochem. Soc 116, 124 (1969).
12Ticianelli, E., Derouin, C., Redondo, A. & Srinivasan, S. Methods to advance technology of proton exchange membrane fuel cells. Journal of the Electrochemical Society 135, 2209-2214 (1988).
13Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today 38, 445-457 (1997).
14Dohle, H., Divisek, J. & Jung, R. Process engineering of the direct methanol fuel cell. Journal of Power Sources 86, 469-477 (2000).
15Kilner, J. A., Skinner, S., Irvine, S. & Edwards, P. Functional materials for sustainable energy applications. (Elsevier, 2012).
16Kamarudin, S. K., Achmad, F. & Daud, W. R. W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of hydrogen energy 34, 6902-6916 (2009).
17Ocampo, A., Miranda-Hernandez, M., Morgado, J., Montoya, J. & Sebastian, P. Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance. Journal of power sources 160, 915-924 (2006).
18He, Z., Chen, J., Liu, D., Zhou, H. & Kuang, Y. Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond and Related Materials 13, 1764-1770 (2004).
19Ding, J., Chan, K.-Y., Ren, J. & Xiao, F.-s. Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochimica acta 50, 3131-3141 (2005).
20Park, K.-W., Han, D.-S. & Sung, Y.-E. PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells. Journal of power sources 163, 82-86 (2006).
21Saito, Y. et al. High yield of single-wall carbon nanotubes by arc discharge using Rh–Pt mixed catalysts. Chemical physics letters 294, 593-598 (1998).
22Alcaide, F. et al. Testing of carbon supported Pd–Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells. international journal of hydrogen energy 36, 4432-4439 (2011).
23Grgur, B., Markovic, N. & Ross, P. Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. The Journal of Physical Chemistry B 102, 2494-2501 (1998).
24Crabb, E. M., Marshall, R. & Thompsett, D. Carbon Monoxide Electro‐oxidation Properties of Carbon‐Supported PtSn Catalysts Prepared Using Surface Organometallic Chemistry. Journal of The Electrochemical Society 147, 4440-4447 (2000).
25Luo, J., Njoki, P. N., Lin, Y., Wang, L. & Zhong, C. J. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen. Electrochemistry communications 8, 581-587 (2006).
26Yajima, T., Uchida, H. & Watanabe, M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. The Journal of Physical Chemistry B 108, 2654-2659 (2004).
27Liu, Z., Ling, X. Y., Su, X. & Lee, J. Y. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. The Journal of Physical Chemistry B 108, 8234-8240 (2004).
28Song, H., Xiao, P., Qiu, X. & Zhu, W. Design and preparation of highly active carbon nanotube-supported sulfated TiO 2 and platinum catalysts for methanol electrooxidation. Journal of Power Sources 195, 1610-1614 (2010).
29Jiang, Z.-Z., Wang, Z.-B., Chu, Y.-Y., Gu, D.-M. & Yin, G.-P. Ultrahigh stable carbon riveted Pt/TiO 2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy & Environmental Science 4, 728-735 (2011).
30Chen, C.-S. & Pan, F.-M. Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation. Applied Catalysis B: Environmental 91, 663-669, doi:10.1016/j.apcatb.2009.07.008 (2009).
31Yang, S. et al. Ternary Pt–Ru–SnO 2 hybrid architectures: unique carbon-mediated 1-D configuration and their electrocatalytic activity to methanol oxidation. Journal of Materials Chemistry 22, 7104-7107 (2012).
32Yu, X., Kuai, L. & Geng, B. CeO 2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. Nanoscale 4, 5738-5743 (2012).
33Chu, Y., Cao, J., Dai, Z. & Tan, X. A novel Pt/CeO 2 catalyst coated with nitrogen-doped carbon with excellent performance for DMFCs. Journal of Materials Chemistry A 2, 4038-4044 (2014).
34Huang, H., Chen, Q., He, M., Sun, X. & Wang, X. A ternary Pt/MnO 2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation. Journal of Power Sources 239, 189-195 (2013).
35Wang, Y. et al. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochemistry Communications 5, 662-666 (2003).
36Tripković, A. et al. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochimica Acta 47, 3707-3714 (2002).
37Tripković, A. V., Popović, K. D., Lović, J., Jovanović, V. & Kowal, A. Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems. Journal of Electroanalytical Chemistry 572, 119-128 (2004).
38Scott, K., Yu, E., Vlachogiannopoulos, G., Shivare, M. & Duteanu, N. Performance of a direct methanol alkaline membrane fuel cell. Journal of Power Sources 175, 452-457, doi:10.1016/j.jpowsour.2007.09.027 (2008).
39Lue, S. J., Mahesh, K. P. O., Wang, W.-T., Chen, J.-Y. & Yang, C.-C. Permeant transport properties and cell performance of potassium hydroxide doped poly(vinyl alcohol)/fumed silica nanocomposites. Journal of Membrane Science 367, 256-264, doi:10.1016/j.memsci.2010.11.009 (2011).
40Liu, J., Ye, J., Xu, C., Jiang, S. P. & Tong, Y. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti. Electrochemistry Communications 9, 2334-2339, doi:10.1016/j.elecom.2007.06.036 (2007).
41Xu, C., kang Shen, P. & Liu, Y. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. Journal of Power Sources 164, 527-531 (2007).
42Bambagioni, V. et al. Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol= methanol, ethanol, glycerol). Journal of Power Sources 190, 241-251 (2009).
43Long, N. V., Hien, T. D., Asaka, T., Ohtaki, M. & Nogami, M. Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures. international journal of hydrogen energy 36, 8478-8491 (2011).
44Li, X., Huang, Q., Zou, Z., Xia, B. & Yang, H. Low temperature preparation of carbon-supported Pd Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochimica Acta 53, 6662-6667 (2008).
45Wang, X., Tang, Y., Gao, Y. & Lu, T. Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell. Journal of Power Sources 175, 784-788 (2008).
46Xu, C., Tian, Z., Shen, P. & Jiang, S. P. Oxide (CeO 2, NiO, Co 3 O 4 and Mn 3 O 4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimica Acta 53, 2610-2618 (2008).
47Zhao, Y., Yang, X., Tian, J., Wang, F. & Zhan, L. Methanol electro-oxidation on Ni@ Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. International Journal of Hydrogen Energy 35, 3249-3257 (2010).
48Kumar, K. S., Haridoss, P. & Seshadri, S. Synthesis and characterization of electrodeposited Ni–Pd alloy electrodes for methanol oxidation. Surface and Coatings Technology 202, 1764-1770 (2008).
49Singh, R. & Singh, A. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon 47, 271-278 (2009).
50Singh, R., Sharma, T., Singh, A., Mishra, D. & Tiwari, S. Perovskite-type La 2− x Sr x NiO 4 (0≤ x≤ 1) as active anode materials for methanol oxidation in alkaline solutions. Electrochimica Acta 53, 2322-2330 (2008).
51Thamer, B. M. et al. Cobalt-incorporated, nitrogen-doped carbon nanofibers as effective non-precious catalyst for methanol electrooxidation in alkaline medium. Applied Catalysis A: General 498, 230-240 (2015).
52Jin, G.-P., Ding, Y.-F. & Zheng, P.-P. Electrodeposition of nickel nanoparticles on functional MWCNT surfaces for ethanol oxidation. Journal of Power Sources 166, 80-86 (2007).
53Sheikh, A., Abd-Alftah, K. E.-A. & Malfatti, C. On reviewing the catalyst materials for direct alcohol fuel cells (DAFCs). energy 1 (2014).
54Heli, H., Jafarian, M., Mahjani, M. & Gobal, F. Electro-oxidation of methanol on copper in alkaline solution. Electrochimica acta 49, 4999-5006 (2004).
55Döner, A., Solmaz, R. & Kardaş, G. Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell. Energy 90, 1144-1151 (2015).
56Tritsaris, G. & Rossmeisl, J. Methanol oxidation on model elemental and bimetallic transition metal surfaces. The Journal of Physical Chemistry C 116, 11980-11986 (2012).
57Hameed, R. A. & El-Khatib, K. Ni–P and Ni–Cu–P modified carbon catalysts for methanol electro-oxidation in KOH solution. international journal of hydrogen energy 35, 2517-2529 (2010).
58Abdel Rahim, M. A., Abdel Hameed, R. M. & Khalil, M. W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. Journal of Power Sources 134, 160-169, (2004).
59Hameed, R. A. & El-Sherif, R. M. Microwave irradiated nickel nanoparticles on Vulcan XC-72R carbon black for methanol oxidation reaction in KOH solution. Applied Catalysis B: Environmental 162, 217-226 (2015).
60Hu, C.-C. & Wen, T.-C. Effects of the nickel oxide on the hydrogen evolution and para-nitroaniline reduction at Ni-deposited graphite electrodes in NaOH. Electrochimica acta 43, 1747-1756 (1998).
61Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L. & Bell, A. T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C 119, 7243-7254, doi:10.1021/acs.jpcc.5b00105 (2015).
62Ojani, R., Raoof, J.-B. & Ahmady-Khanghah, Y. Copper-poly (2-aminodiphenylamine) as a novel and low cost electrocatalyst for electrocatalytic oxidation of methanol in alkaline solution. Electrochimica Acta 56, 3380-3386 (2011).
63Venkatasubramanian, R. et al. Additive-mediated electrochemical synthesis of platelike copper crystals for methanol electrooxidation. Langmuir 29, 13135-13139 (2013).
64Liu, R.-S. Electrochemical Technologies for Energy Storage and Conversion: Vol. 1. (John Wiley & Sons, 2012).
65Su, C.-Y., Pan, C.-T., Liou, T.-P., Chen, P.-T. & Lin, C.-K. Investigation of the microstructure and characterizations of TiN/CrN nanomultilayer deposited by unbalanced magnetron sputter process. Surface and Coatings Technology 203, 657-660 (2008).
66Wang, Z.-B. et al. Catalyst failure analysis of a direct methanol fuel cell membrane electrode assembly. Journal of Power Sources 177, 386-392 (2008).
67Cha, H.-C., Chen, C.-Y. & Shiu, J.-Y. Investigation on the durability of direct methanol fuel cells. Journal of Power Sources 192, 451-456 (2009).
68Sharma, S. & Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts—a review. Journal of Power Sources 208, 96-119 (2012).
69Asgari, M., Maragheh, M. G., Davarkhah, R. & Lohrasbi, E. Methanol electrooxidation on the nickel oxide nanoparticles/multi-walled carbon nanotubes modified glassy carbon electrode prepared using pulsed electrodeposition. Journal of The Electrochemical Society 158, K225-K229 (2011).
70Zhang, L.-R. et al. Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium. New Journal of Chemistry 36, 1108-1113 (2012).
71Huang, S.-Y., Ganesan, P. & Popov, B. N. Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Applied Catalysis B: Environmental 96, 224-231 (2010).
72Golikand, A. N. et al. Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium. Journal of power sources 144, 21-27 (2005).
73Karim-Nezhad, G. & Dorraji, P. S. Copper chloride modified copper electrode: Application to electrocatalytic oxidation of methanol. Electrochimica Acta 55, 3414-3420 (2010).
74Wang, W., Li, R., Hua, X. & Zhang, R. Methanol electrooxidation on glassy carbon electrode modified with bimetallic Ni (II) Co (II) salen complexes encapsulated in mesoporous zeolite A. Electrochimica Acta 163, 48-56 (2015).
75Cao, H., Fan, Z., Hou, G., Tang, Y. & Zheng, G. Ball-flower-shaped Ni nanoparticles on Cu modified TiO2 nanotube arrays for electrocatalytic oxidation of methanol. Electrochimica Acta 125, 275-281,(2014).
76Cardarelli, F. Materials handbook: a concise desktop reference. (Springer Science & Business Media, 2008).
77Holleck, H. Material selection for hard coatings. Journal of Vacuum Science & Technology A 4, 2661-2669 (1986).
78Matsuoka, M. et al. Effects of arrival rate and gas pressure on the chemical bonding and composition in titanium nitride films prepared on Si (100) substrates by ion beam and vapor deposition. Journal of Vacuum Science & Technology A 23, 137-141 (2005).
79Lee, D.-S. et al. Effects of the microstructure of platinum electrode on the oxidation behavior of TiN diffusion barrier layer. Japanese journal of applied physics 42, 630 (2003).
80Wang, Y.-J., Wilkinson, D. P. & Zhang, J. Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews 111, 7625-7651(2011).
81Cheung, N., Von Seefeld, H., Nicolet, M. A., Ho, F. & Iles, P. Thermal stability of titanium nitride for shallow junction solar cell contacts. Journal of Applied Physics 52, 4297-4299 (1981).
82Wasa, K. & Hayakawa, S. Reactively sputtered titanium resistors, capacitors and rectifiers for microcircuits. Microelectronics Reliability 6, 213-221 (1967).
83Synielnikowa, W., Niemyski, T., Panczyk, J. & Kierzek-Pecold, E. Vapour-phase crystallization and some physical properties of titanium nitride. Journal of the Less Common Metals 23, 1-6 (1971).
84Oh, U. & Je, J. H. Effects of strain energy on the preferred orientation of TiN thin films. Journal of applied physics 74, 1692-1696 (1993).
85Jones, M., McColl, I. & Grant, D. Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering. Surface and Coatings Technology 132, 143-151 (2000).
86Thornton, J. A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science & Technology 11, 666-670 (1974).
87He, C. et al. Effect of structural defects on corrosion initiation of TiN nanocrystalline films. Applied Surface Science 276, 667-671 (2013).
88Wang, Y., Yuan, H., Lu, X., Zhou, Z. & Xiao, D. All solid‐state pH electrode based on titanium nitride sensitive film. Electroanalysis 18, 1493-1498 (2006).
89Xiao, Y. et al. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Electrochimica Acta 141, 279-285 (2014).
90Kissinger, P. T. & Heineman, W. R. Cyclic voltammetry. Journal of Chemical Education 60, 702 (1983).
91蔡毓楨, 薛富盛, 呂福興 & 吳宗明. 原子力顯微鏡實作訓練教材. (台灣五南圖書出版股份有限公司, 2015).
92Jiang, H., Rühle, M. & Lavernia, E. On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. Journal of materials research 14, 549-559 (1999).
93Danaee, I., Jafarian, M., Mirzapoor, A., Gobal, F. & Mahjani, M. Electrooxidation of methanol on NiMn alloy modified graphite electrode. Electrochimica Acta 55, 2093-2100 (2010).
94Ottakam Thotiyl, M. M., Ravikumar, T. & Sampath, S. Platinum particles supported on titanium nitride: an efficient electrode material for the oxidation of methanol in alkaline media. Journal of Materials Chemistry 20, 10643, doi:10.1039/c0jm01600d (2010).
95Hameed, R. M. A. & El-Khatib, K. M. Ni–P and Ni–Cu–P modified carbon catalysts for methanol electro-oxidation in KOH solution. International Journal of Hydrogen Energy 35, 2517-2529, (2010).
96Barakat, N. A., Abdelkareem, M. A. & Kim, H. Y. Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst. Applied Catalysis A: General 455, 193-198 (2013).
97Prathap, M. A. & Srivastava, R. Synthesis of NiCo 2 O 4 and its application in the electrocatalytic oxidation of methanol. Nano Energy 2, 1046-1053 (2013).
98Rostami, T., Jafarian, M., Miandari, S., Mahjani, M. G. & Gobal, F. Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution. Chinese Journal of Catalysis 36, 1867-1874 (2015).
99Yi, Q., Huang, W., Zhang, J., Liu, X. & Li, L. Methanol oxidation on titanium-supported nano-scale Ni flakes. Catalysis Communications 9, 2053-2058, doi:10.1016/j.catcom.2008.03.051 (2008).
100Xie, S., Tong, X.-L., Jin, G.-Q., Qin, Y. & Guo, X.-Y. CNT–Ni/SiC hierarchical nanostructures: preparation and their application in electrocatalytic oxidation of methanol. Journal of Materials Chemistry A 1, 2104-2109 (2013).
101Kim, M. S., Hwang, T. S. & Kim, K. B. A study of the electrochemical redox behavior of electrochemically precipitated nickel hydroxides using electrochemical quartz crystal microbalance. Journal of the Electrochemical Society 144, 1537-1543 (1997).
102Wang, Z. et al. High electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cells. Journal of Solid State Electrochemistry 17, 99-107, doi:10.1007/s10008-012-1855-8 (2013).
103Yang, J. et al. Electro-oxidation of methanol on mesoporous nickel phosphate modified GCE. Electrochemistry Communications 23, 13-16 (2012).
104Das, A. K., Layek, R. K., Kim, N. H., Jung, D. & Lee, J. H. Reduced graphene oxide (RGO)-supported NiCo 2 O 4 nanoparticles: an electrocatalyst for methanol oxidation. Nanoscale 6, 10657-10665 (2014).
105Tian, X.-k., Zhao, X.-y., Yang, C., Pi, Z.-b. & Zhang, S.-x. Performance of ethanol electro-oxidation on Ni–Cu alloy nanowires through composition modulation. Nanotechnology 19, 215711 (2008).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top