Alam, K. Y., & Clark, D. P. (1989). Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. Journal of Bacteriology, 171(11), 6213-6217.
Berg, I. A., Kockelkorn, D., et al. (2010). Autotrophic carbon fixation in archaea. Nature Reviews Microbiology, 8(6), 447-460.
Butler, J. N. (1991). Carbon Dioxide Equilibria and Their Applications Michigan, USA: LEWIS PUBLISHERS, Inc.
Carter, D. M., & Radding, C. M. (1971). The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J Biol Chem, 246, 2502–2512.
Castaño-Cerezo, S., Pastor, J. M., et al. (2009). An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Microbial cell factories, 8(1), 1.
Chang, D.-E., Shin, S., et al. (1999). Acetate metabolism in a pta mutant ofescherichia coli w3110: Importance of maintaining acetyl coenzyme a flux for growth and survival. Journal of Bacteriology, 181(21), 6656-6663.
Chang, Y. Y., Wang, A. Y., et al. (1994). Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS (katF) gene. Molecular microbiology, 11(6), 1019-1028.
Chen, S.-K., Chin, W.-C., et al. (2013). Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. Bioresource technology, 145, 204-209. doi: http://dx.doi.org/10.1016/j.biortech.2013.01.115
Cherepanov, P. P., & Wackernagel, W. (1995). Gene disruption in Escherichia coli: Tc R and Km R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158(1), 9-14.
Cherrington, C. A., Hinton, M., et al. (1991). Short‐chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. Journal of Applied Bacteriology, 70(2), 161-165.
Cox, S. J., Levanon, S. S., et al. (2006). Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metabolic engineering, 8(1), 46-57.
Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 97(12), 6640-6645. doi: 10.1073/pnas.120163297
Dharmadi, Y., Murarka, A., et al. (2006). Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnology and bioengineering, 94(5), 821-829.
Dittrich, C. R., Bennett, G. N., et al. (2005). Characterization of the Acetate‐Producing Pathways in Escherichia coli. Biotechnology progress, 21(4), 1062-1067.
Eiteman, M. A., & Altman, E. (2006). Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol, 24(11), 530-536.
Gong, F., Liu, G., et al. (2015). Quantitative analysis of an engineered CO 2-fixing Escherichia coli reveals great potential of heterotrophic CO 2 fixation. Biotechnology for biofuels, 8(1), 1.
Gosset, G. (2005). Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microbial cell factories, 4(1), 1.
Hallenbeck, P. L., & Kaplan, S. (1987). Cloning of the gene for phosphoribulokinase activity from Rhodobacter sphaeroides and its expression in Escherichia coli. Journal of Bacteriology, 169(8), 3669-3678.
Hallenbeck, P. L., Lerchen, R., et al. (1990). Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides. Journal of Bacteriology, 172(4), 1749-1761.
Kai, Y., Matsumura, H., et al. (2003). Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Archives of Biochemistry and Biophysics, 414(2), 170-179.
Kellogg, E. A., & Juliano, N. D. (1997). The structure and function of RuBisCO and their implications for systematic studies. AMERICAN JOURNAL OF BOTANY, 84(3), 413-428. doi: 10.2307/2446015
Kmiec, E., & Holloman, W. (1981). Beta protein of bacteriophage lambda promotes renaturation of DNA. Journal of Biological Chemistry, 256(24), 12636-12639.
Kunze, M., Pracharoenwattana, I., et al. (2006). A central role for the peroxisomal membrane in glyoxylate cycle function. Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research, 1763(12), 1441-1452.
Li, Y.-H., Ou-Yang, F.-Y., et al. (2015). The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. Bioresource Technology, 187, 189-197. doi: http://dx.doi.org/10.1016/j.biortech.2015.03.090
Little, J. W. (1967). An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J. Biol. Chem., 242, 679-686.
Marsić, N., Roje, S., et al. (1993). In vivo studies on the interaction of RecBCD enzyme and lambda Gam protein. Journal of Bacteriology, 175(15), 4738-4743.
Murphy, K. C. (1991). Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. Journal of Bacteriology, 173(18), 5808-5821.
Nishitani, Y., Yoshida, S., et al. (2010). Structure-based Catalytic Optimization of a Type III Rubisco from a Hyperthermophile. Journal of Biological Chemistry, 285(50), 39339-39347. doi: 10.1074/jbc.M110.147587
Parikh, M. R., Greene, D. N., et al. (2006). Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Engineering Design and Selection, 19(3), 113-119.
Peterhansel, C., Krause, K., et al. (2013). Engineering photorespiration: current state and future possibilities. Plant Biol (Stuttg), 15(4), 754-758. doi: 10.1111/j.1438-8677.2012.00681.x
Rubin, E., & De Coninck, H. (2005). IPCC special report on carbon dioxide capture and storage. UK: Cambridge University Press. TNO (2004): Cost Curves for CO2 Storage, Part, 2.
Shinozaki, K., Yamada, C., et al. (1983). Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 80(13), 4050-4054.
Sydney, E. B., Sturm, W., et al. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource technology, 101(15), 5892-5896.
Tamoi, M., Murakami, A., et al. (1998). Lack of light/dark regulation of enzymes involved in the photosynthetic carbon reduction cycle in cyanobacteria, Synechococcus PCC 7942 and Synechocystis PCC 6803. Bioscience, biotechnology, and biochemistry, 62(2), 374-376.
Trueba, F., & Woldringh, C. (1980). Changes in cell diameter during the division cycle of Escherichia coli. Journal of Bacteriology, 142(3), 869-878.
Wedel, N., & Soll, J. (1998). Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proceedings of the National Academy of Sciences, 95(16), 9699-9704.
Yang, C.-H., Liu, E.-J., et al. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli. Microbial cell factories.
Zhu, Y., Eiteman, M., et al. (2007). Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol, 73(2), 456-464.
Zhuang, Z.-Y., & Li, S.-Y. (2013). Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresource technology, 150, 79-88.
楊承翰. (2015). 利用重組大腸桿菌回收二氧化碳生產生質化學品. 國立國立中興大學化學工程學系碩士學位論文, 1-74.