(3.236.222.124) 您好!臺灣時間:2021/05/13 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪茂峻
研究生(外文):Mao-Chun Hung
論文名稱:電鍍添加劑對電鍍鎳鐵合金性質及微結構之效應
論文名稱(外文):Effects of Plating Additives on Microstructure and Preoperties of Eletrodeposited Ni-Fe Alloy
指導教授:竇維平
指導教授(外文):Wei-Ping Dow
口試委員:張厚謙林智汶葛明德
口試委員(外文):HOU-CHIEN CHANGCHI-WEN LINMing-Der Ger
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:141
中文關鍵詞:合金電鍍鎳鐵合金電鍍添加劑電磁波遮蔽
外文關鍵詞:Alloy ElectroplatingNiFe AlloyPlating AdditivesEMI shielding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:436
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電子產業發展日新月異,人們對電子產品的需求也日益漸增,以手機為例,不僅是外型之創新,變得更加輕薄;在功能上也是趨向多元化。為了要達到輕便易攜帶及多功能性,電子產品體積縮小及內部積體電路的高密度化設計是勢在必行的,內部電子元件彼此間的距離縮短,隨之而來的是鄰近元件之間受到彼此產生的電磁波干擾問題。運用具備導電及磁性之材料塗佈於電子元件上的方式,能有效地達到遮蔽電磁波的效果,這類遮蔽電磁波材料常見的有導電高分子、金屬及其合金。在此研究中,選擇以電鍍的方式製備鎳鐵合金薄膜並應用於晶片封裝上,鎳鐵合金薄膜除了具備遮蔽電磁波的功能,同時也兼具低熱膨脹係數、抗腐蝕、耐磨等良好物性。
此研究中,吾人選擇鎳鐵合金薄膜作為遮蔽電磁波材料,並以電鍍的方式搭配電鍍添加劑,將其沉積於以銅作為導電層的樹脂基板及矽複合材料所構成的封裝材料上,並藉由計時電位法及線性掃描伏安法探討電鍍添加劑的電化學行為與鎳鐵合金鍍層性質,如應力、表面形貌、結晶結構之間的關連性。由實驗結果得知,電鍍添加劑藉由不同的吸附方式,平整表面結構及細化晶粒,同時也能摻入鎳鐵鍍層,使得鎳鐵鍍層應力由張應力轉為有利附著性的壓應力。計時電位法結果顯示糖精搭配MBIS擁有最強的抑制性對應得到最平整光澤的鎳鐵鍍層。在鎳鐵電鍍系統中,產氫反應抑是重要的議題,故吾人運用線性掃描伏安法得知電鍍添加劑能使得產氫電位延後及降低產氫極限電流,進而提升電鍍效率及避免鎳鐵鍍層產生氫脆現象。吾人根據單一電鍍添加之功能性開發出鎳鐵合金電鍍配方,使鎳鐵合金薄膜緊密地附著於封裝晶片上且具備遮蔽電磁波之功用。


With the evolving technology, demand for electronic products such as smartphones become higher. The types of Smartphones become much thinner and more multi-functional. In order to meet the portability and convenience, it is necessary to reduce the volume of the electronic products. So the chip packaging technology of electronic components has increasingly become high-density, which is subject to electromagnetic interference (EMI). Conductive and magnetic materials coating on the elements is an effective method to shield electromagnetic waves. The materials include metals and conductive polymers, which are common sources of protective materials. Based on the viewpoint of conductive and magnetic materials, electrodeposited NiFe alloy which can be electroplated on the packaged IC chip is employed in this study because it possesses not only the ability of electromagnetic waves shielding but also the properties of low coefficient of thermal expansion, anti-corrosion, anti-moisture, and anti-abrasion.
In this study, Ni-Fe alloy film is adopted as the shielding material and is prepared by galvanostatic electrodeposition on both resin subtrates and molding compounds with copper seed layers, using different plating additives. The research correlates the electrochemical signal provided by galvanostatic measurement and linear sweep voltammetry (LSV) and the deposit properties, including surface morphology, texture, grain size, and film stress. The results show that the electroplating additives play important roles to modify the surface morphology and lead to compressive film stress due to their different adsorption ways and incorporation behavior. Galvanostatic measurements demonstrate that a strong suppression corresponds to the smooth surface. Linear sweep voltammetry (LSV) measurements find out the correlation between hydrogen revolution and plating additives. The results reveal that the additives can postpone the hydrogen reduction potential and reduce the cathodic limiting current of hydrogen revolution. It is a significant factor to avoid embrittled alloy deposit due to hydrogen incorporation. According to the specific function of each plating additive, the plating additives are combined to form the NiFe electrdeposition formulation which leads to the NiFe deposit tighlt adhere on the molding compound and avoids the electromagnetic wave interference (EMI) phenomenon.


摘要 i
Abstract ii
圖目錄 vi
表目錄 xiii
第1章、緒論與研究動機 1
第1-1節、緒論 1
第1-2節、研究動機 2
第2章、電化學理論 3
第2-1節、電化學概論 3
第2-1.1項、電鍍原理與方式 3
第2-1.2項、電化學反應程序 6
第2-1.3項、極化與過電位 8
第2-1.4項、電子轉移控制與質傳之關係 10
第三章、文獻回顧 12
第3-1節、鎳電鍍、合金 12
第3-1.1項、鎳電鍍 (Nickel Electrodeposition) 12
第3-1.2項、合金 13
第3-2節、鎳鐵電鍍基本鍍液 15
第3-3節、鎳鐵電鍍添加劑 19
第3-4節、鎳鐵鍍層表面形貌、成份及結晶結構分析 23
第3-5節、鎳鐵鍍層應力與附著力 29
第3-6節、鎳鐵鍍層磁性性質與遮蔽電磁波效應 35
第3-7節、鎳鐵鍍層抗腐蝕與抗氧化性 41
第4章、實驗藥品、裝置與步驟 43
第4-1節、實驗藥品 43
第4-2節、實驗裝置 43
第4-2.1項、電鍍設備 43
第4-2.2項、分析設備 45
第4-2.3項、哈林槽電鍍實驗 52
第5章、實驗結果與討論 54
第5-1節、基本鍍液 (Virgin Make-Up Solution, VMS) 開發 54
第5-2節、添加劑對鍍液性質、鍍層結構的影響與最佳濃度判定 66
第5-2-1項、鍍液分析-pH變化與鍍液沉澱情形 66
第5-2-2項、鍍液分析-接觸角分析 68
第5-2-3項、鍍層分析-表面形貌分析 70
第5-2-4項、鍍層分析-元素比例分析 75
第5-2-5項、鍍層分析-鍍層結構分析 80
第5-2-6項、鍍層分析-厚度與電鍍效率 83
第5-2-7項、鍍層分析-鍍層應力分析 85
第5-2-8項、分析統整與最佳化濃度判定 87
第5-3節、鎳鐵合金電鍍配方開發 88
第5-3-1項、鍍液表面張力 90
第5-3-2項、鍍層厚度控制 91
第5-3-3項、鍍層表面形貌控制 94
第5-3-4項、鍍層鎳鐵比例控制 97
第5-4節、基本鍍液(Virgin Make-Up Solution, VMS)之電化學分析-Linear Sweep Voltammetry (LSV) 101
第5-4-1項 鎳電鍍系統 (Nickel electrodeposition system) 101
第5-4-2項、鐵電鍍系統 (Iron electrodeposition system) 111
第5-4-3項、鎳鐵電鍍系統 (Nickel-Iron electrodeposition system) 114
第5-4-4項、氫氣系統 ( Hydorgen revolution system) 120
第5-5節、鎳鐵合金電鍍配方應用於Molding Compound與其材料特性分析 121
第5-5-1項、實驗方法 121
第5-5-2項、鎳鐵合金鍍層外觀與SEM/EDS分析 122
第5-5-3項、XRD分析 126
第5-6節、鎳鐵合金鍍層性能測試 129
第5-6-1項、鎳鐵合金鍍層於Molding Compound上之附著性測試 129
第5-6-2項、鎳鐵合金鍍層於Molding Compound上之電磁波干擾遮蔽量測 131
第6章、結論 132
第7章、未來規劃 135
第8章、參考文獻 136


[1]R. J. Astalos and R. E. Camley, "Theory of a high frequency magnetic tunable filter and phase shifter," Journal of Applied Physics, vol. 83, p. 3744, 1998.
[2]N. Cramer, D. Lucic, R. E. Camley, and Z. Celinski, "High attenuation tunable microwave notch filters utilizing ferromagnetic resonance " Journal of Applied Physics, vol. 87, p. 6911, 2000.
[3]B. Kuanr, L. Malkinski, R. E. Camley, and Z. Celinski, "Iron and Permalloy based magnetic monolithic tunable microwave devices," Journal of Applied Physics, vol. 93, p. 8591, 2003.
[4]H. Ono, S. Yoshida, and S. Ando, "Improvement of the electromagnetic-noise suppressing features for Fe–Si–Al composite sheets by dc magnetic field biasing," Journal of Applied Physics, vol. 93, p. 6662, 2003.
[5]K. H. Kim, M. Yamaguchi, and K. I. Arai, "Domain wall observation and eddy current loss of (110)[001] oriented 17–22 μm thick Si‐Fe tape‐wound cores up to 5 kHz " Journal of Applied Physics, vol. 70, p. 6256, 1991.
[6]N. F. Colaneri and L. W. Schacklette, "EMI shielding measurements of conductive polymer blends," Instrumentation and Measurement, IEEE Transactions on, vol. 41, p. 291-297, 1992.
[7]Al-Saleh, H. Mohammed, Sundararaj, and Uttandaraman, "Electromagnetic interference shielding mechanisms of CNT/polymer composites," Carbon, vol. 47, p. 1738-1746, 2009.
[8]N. N. Phuoc, W. T. Soh, G. Chai, and C. K. Ong, "Investigation of magnetic properties and microwave characteristics of obliquely sputtered NiFe/MnIr bilayers," Journal of Applied Physics, vol. 113, p. 073902, 2013.
[9]M. Srivastava, G. Yoganandan, and V. K. W. Grips, "Electrodeposition of Ni and Co coatings from ionic liquid," Surface Engineering, vol. 28, p. 424-429 2012.
[10]Y. Cao, G. Y. Wei, H. L. Ge, and X. F. Meng, "Study on preparation of NiFe films by galvanostatic electrodeposition," Surface Engineering, vol. 30, p. 97-101, 2014.
[11]R. Abdel-Karim, Y. Reda, M.Muhammed, S. El-Raghy, M. Shoeib, and H. Ahmed, "Electrodeposition and Characterization of Nanocrystalline Ni-Fe Alloys," Journal of Nanomaterials, vol. 2011, 2011.
[12]萬其超, "電化學之原理與應用," 徐式基金會出版, 1992.
[13]M.S.Chandrasekar and M. Pushpavanam, "Pulse and pulse reverse plating—Conceptual,advantages and applications," Electrochimica Acta, vol. 53, p. 3313-3322, 2008.
[14]T.R.Rosebruch and W. L. Miller, "Mathematical Theory of the Change of Concentration at the Electrode brought about by Diffusion and by Chemical Reaction," Journal of Physical chemistry, vol. 14, p. 816-884, 1910.
[15]J. J. Sun, K. Kondo, T.Okamura, S.Oh, M. Tomisaka, H. Yonemura, et al., "High-Aspect-Ratio Copper Via Filling Used for Three Dimensional Chip Stacking," Journal of Electrochemical Society, vol. 150, p. G355-G358, 2003.
[16]K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, et al., "High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking II. Reduced Electrodeposition Process Time," Journal of Electrochemical Society, vol. 152, p. H173-H177, 2000.
[17]N. V. Mandich, "Pulse and Pulse-Reverse Electroplating," Metal Finishing, vol. 98, p. 374, 2000.
[18]胡啟章, "電化學原理與方法," 五南圖書出版公司, 2007.
[19]Ana Isabel C. Santanaa, Susana L. Díaza, Oswaldo E. Barciaa, Oscar R. Mattosa, "A Kinetic Study on Nickel Electrodeposition from Sulfate Acid Solutions," Journal of The Electrochemical Society, vol.156, p. D326-D330, 2009.
[20]A. Brenner, "Electrodeposition of Alloys," 1963.
[21]K.Zeng, R.Stierman, T. C. Chiu, D.Edwards, K.Ano, and K.N.Tu, "Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability," Journal of Applied Physics, vol. 97, p. 024508-024508-8, 2005.
[22]I. Tabakovic, J. Gong, S. Riemer, and M. Kautzky, "Influence of Surface Roughness and Current Efficiency on Composition Gradients of Thin NiFe Films Obtained by Electrodeposition," Journal of The Electrochemical Society, vol. 162, p. D102-D108, 2015.
[23]J. Horkans, "Effect of Plating Parameters on Electrodeposited NiFe," J.Electrochemical Society, vol.128, p.45-49, 1981.
[24]J. W. Dini, "Electrodeposition:The Materials Science of Coatings and Substrates", 1993.
[25]H. Dahms and I. M. Croll, "The Anomalous Codeposition of Iron-Nickel Alloys," J.Electrochemical Society, vol.112, p.771-775, 1965.
[26]J. Wang, D. R. Gabe, A. C. Hart, and P. C. Crouch, "The chemistry of nickel electroplating solution," The International Journal of Surface Engineering and Coatings, vol. 91, p. 4-10, 2013.
[27]陳鈞武,何士桓, "電鍍原理與工藝," 2010.
[28]T. Osaka, T. Sawaguchi, F. Mizutanic, T. Yokoshima, M. Takai, and Y. Okinakab, "Effects of Saccharin and Thiourea on Sulfur Inclusion and Coercivity of Electroplated Soft Magnetic CoNiFe Film," Journal of The Electrochemical Society, vol. 146, p. 3295-3299, 1999.
[29]J. Edwards, "Incorporation of Sulphur in Nickel Deposited from Solutions Containing p-Toluenesul-phonamide and Saccharin," Transactions of the Institute of Metal Finishing, vol. 39, p. 52, 1962.
[30]J.Edwards, "Radiotracer Study of Addition Agent Behavior: 4―Mechanism of Incorporation," Transactions of the Institute of Metal Finishing, vol. 41, p. 140, 1964.
[31]J.Edwards, "Radiotracer Study of Addition Agent Behavior: 4―Mechanism of Incorporation," Transactions of the Institute of Metal Finishing, vol. 41, p. 169, 1964.
[32]A. Bodnevas and J. Zahavi, "Effect of additive conversion on internal stresses in nickel deposits," plating and surface finishing, vol. 81, p. 75, 1994.
[33]A. H. Zhou and N. X. Xie, "Investigation of electrosorption of organic molecules onto gold and nickel electrodes using an electrochemical quartz crystal microbalance," Journal of Colloid and Interface Science, vol. 220, p. 281-287, 1999.
[34]J. H. Lim, E. C. Park, J. Joo, and S. B. Jung, "Effect of Additives on Microstructure and Mechanical Properties of Nickel Plate/Mask Fabricated by Electroforming Process," Journal of the Electrochemical Society, vol. 156, p. D108-D112, 2009.
[35]延. 周, 良. 市野, 正. 興戸, and 猛. 沖, "交流界面インピーダンス法によるワット浴からのニッケルめっきに及ぼすかく拌と添加剤の影響に関する研究," 表面技術, vol. 43, p. 601-606, 1992.
[36]Z. Daojiong, "Surface structure and catalytic activity of electrodeposited Ni-Fe-Co-Mo alloy electrode by partially leaching Mo and Fe," Transactions of Nonferrous Metals Society of China, vol. 16, p. 623-628, 2006.
[37]S. E. Hadian and D. R. Gabe, "Residual stresses in electrodeposits of nickel and nickel-iron alloys," Surface and Coatings Technology, vol. 122, p. 118–135, 1999
[38]M. Bedir, O. F. Bakkaloglu, I. H. Karahan, and M. Oztas, "A study on electrodeposited NixFe1-x alloy films," Pramana—Journal of Physics, vol. 66, p. 1093–1104, 2006.
[39]H. Nakano, H. Tsuji, S. Oue, H. Fukushima, F. Yang, and W. Tian, "Effect of Organic Additives on the Hardness of Ni Electrodeposited from Sulfamate and Watt''s Solutions," magnetic transactions, vol. 52, p. 2077-2082, 2011.
[40]S. Soni, B. Sheldon, and S. Hearne, "Origins of saccharin-induced stress reduction based on observed fracture behavior of electrodeposited Ni films," Journal of Materials Science, vol. 49, p. 1399-1407, 2014.
[41]A. M. El-Sherik, J. Shirokoff, and U. Erb, "Stress measurements in nanocrystalline Ni electrodeposits," Journal of Alloys and Compounds, vol. 389, p. 140-143, 2005.
[42]M. Spasojević, N. Ćirović, L. Ribić-Zelenović, P. Spasojević, and A. Maričić, "Effect of Deposition Current Density and Annealing Temperature on the Microstructure, Hardness and Magnetic Properties of Nanostructured Nickel-Iron-Tungsten Alloys," Journal of The Electrochemical Society, vol. 161, p. D463-D469, 2014.
[43]J. H. Lim, E. C. Park, J. Joo, and S.-B. Jung, "Effect of Additives on Microstructure and Mechanical Properties of Nickel Plate/Mask Fabricated by Electroforming Process," Journal of The Electrochemical Society, vol. 156, p. D108-D112, 2009.
[44]Y. Liu, L. Liu, J. Li, B. Shen, and W. Hu, "Effect of 2-butyne-1,4-diol on the microstructure and internal stress of electrodeposited Fe–36 wt.%Ni alloy films," Journal of Alloys and Compounds, vol. 478, p. 750-753, 2009.
[45]I. Tabakovic, V. Inturi, and S. Riemer, "Composition, structure, stress, and coercivity of electrodeposited soft magnetic CoNiFe films - Thickness and substrate dependence," Journal of the Electrochemical Society, vol. 149, p. C18-C22, 2002.
[46]A. C. Mishra, T. Sahoo, V. Srinivas, and A. K. Thakur, "Microstructure, magnetic, and magnetoimpedance properties of electrodeposited NiFe/Cu and CoNiFe/Cu wire: A study on influence of saccharin additive in plating bath," Journal of Applied Physics, vol. 109, p. 10, 2011.
[47]R. Valenzuela, M. Knobel, M. Vazquez, and A. Hernando, "Effects of bias field and driving current on the equivalent circuit response of magnetoimpedance in amorphous wires," Journal of Physics D-Applied Physics, vol. 28, p. 2404-2410, 1995.
[48]M. Duffy, S. Kulkarni, and S. Roy, "Improved Shielding Performance Using High Permeability Electroplated Thin Films in Printed Circuit Boards," IEEE Transactions on Magnetics, vol. 47, p. 4282-4285, 2011.
[49]W. P. Jayasekara, J. A. Bain, and M. H. Kryder, "High frequency initial permeability of NiFe and FeAlN," IEEE Transactions on Magnetics, vol. 34, p. 1438-1440, 1998.
[50]X. Liu and S. Y. R. Hui, "An Analysis of a Double-layer Electromagnetic Shield for a Universal Contactless Battery Charging Platform," IEEE 36th Power Electronics Specialists Conference, p. 1767-1772, 2005.
[51]H. L. Seet, X. P. Li, N. Ning, W. C. Ng, and J. B. Yi, "Effect of magnetic coating layer thickness on the magnetic properties of electrodeposited NiFe/Cu composite wires," IEEE Transactions on Magnetics, vol. 42, p. 2784-2786, 2006.
[52]D. Jiles, Introduction to Magnetism and Magnetic Materials, 1991.
[53]H. L. Seet, X. P. Li, Z. J. Zhao, Y. K. Kong, H. M. Zheng, and W. C. Ng, "Development of high permeability nanocrystalline permalloy by electrodeposition," Journal of Applied Physics, vol. 97, p. 3, 2005.
[54]G. Herzer, " Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets," IEEE Transactions on Magnetics, vol. 26, p. 1397-1402, 1990.
[55]N. V. Myung and K. Nobe, "Electrodeposited iron group thin-film alloys - Structure-property relationships," Journal of the Electrochemical Society, vol. 148, p. C136-C144, 2001.
[56]N. T. M. Hai, S. Furukawa, T. Vosch, S. D. Feyter, P. Broekmannac, and K. Wandelt, "Electrochemical Reactions at a Porphyrin-Copper Interface," Physical Chemistry Chemical Physics, vol. 11, p. 5422-5430, 2009.
[57]汪建民, "材料分析," 中國材料科學會, 2013.
[58]I. Tabakovic, V. Inturi, J. Thurn, and M.Kief, "Properties of Ni1−xFex (0.1 < x < 0.9) and Invar (x = 0.64) alloys obtained by electrodeposition," Electrochimica Acta, vol. 55, p. 6749-6754, 2010.
[59]T. Fujitani and J. Nakamura, "The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity," Catalysis Letters, vol. 56, p. 119-124, 1998.
[60]X. Cui and W. Chen, "Saccharin Effects on Direct-Current Electroplating Nanocrystalline Ni–Cu alloys," Journal of The Electrochemical Society, vol. 155, p. K133-K139, 2008.
[61]方景禮, "電鍍添加劑總論."
[62]T. Osaka, M. Takai, K. Hayashi, K. Ohashi, M. Saito, and K. Yamada, "A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity," Nature, vol. 392, p. 796-798, 1998.
[63]M. Takai, K. Hayashi, M. Aoyagi, and T. Osaka, "Electrochemical Preparation of Soft Magnetic CoNiFeS Film with High Saturation Magnetic Flux Density and High Resistivity," Journal of The Electrochemical Society, vol. 144, p. L203-L204, 1997.
[64]Y. N. Bekish, S. K. Poznyak, L. S. Tsybulskaya, T. V. Gaevskaya, V. A. Kukareko, and A. V. Mazanik, "Electrodeposited Ni–Co–B Alloy Coatings: Preparation and Properties," Journal of The Electrochemical Society, vol. 161, p. D620-D627, 2014.
[65]G. Herzer, "Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets " IEEE transactions on magnetics, vol. 26, p. 1397 - 1402, 1990.
[68]S. H. Li, "Research and development of super permeability NiFe/Cu composite wires for micro manetic sensors," 2008.
[69]C. A. Grimes, "EMI Shielding Characteristic of Permalloy Multilayer Thin Films " Aerospace Applications Conference, IEEE, p. 211-221, 1994.
[70]H. D. Arnold and G. W. Elmen, "Permalloy, an alloy of remarkable magnetic properties," Journal of the Franklin Institute, vol. 195, p. 621-632, 1923.
[71]Á. Llavona, L. Pérez, M. C. Sánchez, and V. d. Manuel, "Enhancement of anomalous codeposition in the synthesis of Fe–Ni alloys in nanopores," Electrochimica Acta, vol. 106, p. 392-397, 2013.
[72]T.Burchardt, "Hydrogen evolution on NiPx alloys: the influence of sorbed hydrogen," International Journal of Hydrogen Energy, vol. 26, p. 1193-1198, 2001.
[73]K.-M. Yin and B.-T. Lin, "Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel," Surface and Coatings Technology, vol. 78, p. 205-210, 1996.
[74]M. M. Abou-Krisha, F. H. Assaf, M. Khodari, and E. M. Elkady, "Corrosion resistance and electrodeposition behavior of electrodeposited nickel-cobalt-iron alloys," Anti-Corros. Methods Mater., vol. 59, p. 170-177, 2012.
[75]Y. N. Bekish, S. K. Poznyak, L. S. Tsybulskaya, T. V. Gaevskaya, V. A. Kukareko, and A. V. Mazanik, "Electrodeposited Ni–Co–B Alloy Coatings: Preparation and Properties," Journal of The Electrochemical Society, vol. 161, p. D620-D627, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔