(34.229.64.28) 您好!臺灣時間:2021/05/06 07:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧盈如
研究生(外文):Ying-Ju Lu
論文名稱:以水熱法碳化纖維素暨氫氧化鉀活化生成高比表面積碳材
論文名稱(外文):Hydrothermal carbonization synthesis of high surface area carbon materials by using cellulose in KOH-based condition
指導教授:林寬鋸
口試委員:果尚志黃景帆
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:纖維素水熱法氫氧化鉀中孔洞氮化硼複合材料
外文關鍵詞:cellulosehydrothermalKOHmesoporeBNcomposite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用水熱法將纖維素碳化,提升其含碳量,接著以KOH活化使材料表面生成孔洞而得到mesoporous碳材,可單獨作為吸附劑也可再進一步與氮化硼奈米片形成複合材料,提升材料極性並增加材料的應用性。影響水熱法碳化的因素有:碳化溫度、水與纖維素的比例、碳化時間,碳化溫度是最重要的因素,溫度達250 oC才有顯著的碳化效果。碳化溫度250 oC、碳化時間10小時、比例為5時含碳量從42.29%提升至68.57%。而活化步驟中隨著溫度的提升,材料的比表面積隨之增加,600 oC時可達814 m2/g,孔洞尺寸為2.69 nm,達mesopore範圍。此mesoporous碳材與氮化硼奈米片複合有新的鍵結生成,且仍保留原多孔性結構,預期能結合兩者非極性與極性特點使此複合材料有更多更廣的吸附範疇。

摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章、緒論 1
1.1 前言 1
第二章、基礎理論與文獻回顧 3
2.1 活性碳介紹 3
2.2碳化方法 5
2.2.1高溫分解(pyrolysis) 5
2.2.2 水熱法 6
2.2活化方法 11
2.2.1 物理活化 11
2.2.2 化學活化 13
2.3碳複合材料 17
第三章、研究動機 22
第四章、實驗 24
4.1 實驗儀器 24
4.2 實驗藥品與器材 25
4.3 實驗步驟 26
4.3.1 碳化 26
4.3.2 活化 27
4.3.3 製備BNNS與CAC的複合材料 28
4.4 樣品鑑定分析前處理與條件 29
4.5吸附理論 30
第五章、實驗結果與討論 36
5.1 碳化cellulose的條件優化 36
5.1.1 碳化溫度 36
5.1.2水與反應物的比例 39
5.1.3 碳化時間 42
5.2活化hydrochar的條件優化 44
5.2.1 活化溫度 44
5.2.2 KOH與hydrochar比例 50
5.3 製備BNNS與CAC的複合材料 54
六、結論 61
七、未來展望 62
參考文獻 63



1.Liu, J.; Zhou, Y.; Sun, Y.; Su, W.; Zhou, L., Methane storage in wet carbon of tailored pore sizes. Carbon 2011, 49 (12), 3731-3736.
2.Li Zhou, X. L., Jingwen Li , Ning Wang, Zhen Wang, Yaping Zhou Synthesis of ordered mesoporous carbon molecular sieve and its adsorption capacity for H2,N2,O2,CH4 and CO2. Chemical Physics Letter 2005, 413, 6-9.
3.Khezami, L.; Chetouani, A.; Taouk, B.; Capart, R., Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology 2005, 157 (1-3), 48-56.
4.Ello, A. S.; de Souza, L. K. C.; Trokourey, A.; Jaroniec, M., Development of microporous carbons for CO2 capture by KOH activation of African palm shells. Journal of Co2 Utilization 2013, 2, 35-38.
5.Babel, K.; Jurewicz, K., KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 2008, 46 (14), 1948-1956.
6.Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L., Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochimica Acta 2015, 166, 1-11.
7.Basta, A. H.; Fierro, V.; Ei-Saied, H.; Celzard, A., 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology 2009, 100 (17), 3941-3947.
8.Gonzalez-Garcia, P.; Centeno, T. A.; Urones-Garrote, E.; Avila-Brande, D.; Otero-Diaz, L. C., Microstructure and surface properties of lignocellulosic-based activated carbons. Applied Surface Science 2013, 265, 731-737.
9.El-Hendawy, A.-N. A., An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb2+ cations. Applied Surface Science 2009, 255 (6), 3723-3730.
10.Keiski, G. C. M. P. M. H. L. C. P. A. E. R., Production of Activated Carbon from Cocoa (Theobroma cacao) Pod Husk. Journal of Environmental Engineering 2012, 2 (2).
11.林妙津, 陳., 活性碳. 科學Online - 科技部高瞻自然科學教學資源平台 2016.
12.Bingsi Liua, W. W., Na Wang, (Peter) Chak Tong Au, Preparation of activated carbon with high surface area for high-capacity methane storage. Journal of Energy Chemistry 2014, 23, 662-668.
13.Yu Hongguana, J. R., Wang Panpan, Chen Lihui, Yang Yongjie, Preferential adsorption behaviour of CH4 and CO2 on high-rank coal from Qinshui Basin, China. International Journal of Mining Science and Technology 2014, 24, 491-497.
14.Wang, Y.; Bai, C.; Yan, L.; Qi, X., Adsorption of imidazolium-based ionic liquids from aqueous solution onto cellulose-derived activated carbon materials. Journal of Environmental Chemical Engineering 2015, 3 (4, Part A), 2426-2434.
15.Ribeiro, R. F. L.; Soares, V. C.; Costa, L. M.; Nascentes, C. C., Production of activated carbon from biodiesel solid residues: An alternative for hazardous metal sorption from aqueous solution. Journal of Environmental Management 2015, 162, 123-131.
16.Xiaohong Shao, W. W., Xuejun Zhang, Experimental measurements and computer simulation of methane adsorption on activated carbon fiber. Carbon 2007, 45, 188-195.
17.Bridgwater, A. V., Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 2012, 38, 68-94.
18.Pranjali D. Muleya, C. H., Kamran K. Abdollahi, Cosmin Marculescu, Dorin Boldor, A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Conversion and Management 2016, 117, 273-280.
19.Al-Rahbi, A. S.; Onwudili, J. A.; Williams, P. T., Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char. Bioresource Technology 2016, 204, 71-79.
20.Sevilla, M.; Fuertes, A. B.; Mokaya, R., High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy & Environmental Science 2011, 4 (4), 1400-1410.
21.Islam, M. A.; Tan, I. A. W.; Benhouria, A.; Asif, M.; Hameed, B. H., Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chemical Engineering Journal 2015, 270, 187-195.
22.Sermyagina, E.; Saari, J.; Kaikko, J.; Vakkilainen, E., Hydrothermal carbonization of coniferous biomass: Effect of process parameters on mass and energy yields. Journal of Analytical and Applied Pyrolysis 2015, 113, 551-556.
23.Jain, A.; Balasubramanian, R.; Srinivasan, M. P., Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal 2016, 283, 789-805.
24.Titirici, M. M.; Thomas, A.; Yu, S.-H.; Mueller, J.-O.; Antonietti, M., A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials 2007, 19 (17), 4205-4212.
25.He, C.; Giannis, A.; Wang, J.-Y., Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy 2013, 111, 257-266.
26.Sevilla, M.; Fuertes, A. B., The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47 (9), 2281-2289.
27.Plaza, M. G.; Gonzalez, A. S.; Pis, J. J.; Rubiera, F.; Pevida, C., Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Applied Energy 2014, 114, 551-562.
28.Tao Song, J.-m. L., Jun Xiao, Lai-hong Shen, Effect of micropore and mesopore structure on CO2 adsorption by activated carbons from biomass. New Carbon Materials 2015, 30 (2), 156-166.
29.Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G., Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology 2009, 100 (1), 292-298.
30.Hu, Z.; Srinivasan, M. P., Mesoporous high-surface-area activated carbon. Microporous and Mesoporous Materials 2001, 43 (3), 267-275.
31.Kennedy, L. J.; Vijaya, J. J.; Kayalvizhi, K.; Sekaran, G., Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chemical Engineering Journal 2007, 132 (1–3), 279-287.
32.Liou, T.-H., Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal 2010, 158 (2), 129-142.
33.Huang, Y.; Ma, E.; Zhao, G., Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers. Industrial Crops and Products 2015, 69, 447-455.
34.Sohn, M.; Kim, D. S.; Park, H.-I.; Kim, J.-H.; Kim, H., Porous Silicon-Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes. Electrochimica Acta 2016, 196, 197-205.
35.Geng, Z.; Xiao, Q.; Wang, D.; Yi, G.; Xu, Z.; Li, B.; Zhang, C., Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping. Electrochimica Acta 2016, 202, 131-139.
36.He, X.; Wang, J.; Xu, G.; Yu, M.; Wu, M., Synthesis of microporous carbon/graphene composites for high-performance supercapacitors. Diamond and Related Materials 2016, 66, 119-125.
37.Seyed-Talebi, S. M.; Neek-Amal, M., The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes. Journal of Applied Physics 2014, 116 (15).
38.Muthu, R. N.; Rajashabala, S.; Kannan, R., Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Renewable Energy 2016, 85, 387-394.
39.Falco, C.; Marco-Lozar, J. P.; Salinas-Torres, D.; Morallón, E.; Cazorla-Amorós, D.; Titirici, M. M.; Lozano-Castelló, D., Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon 2013, 62, 346-355.
40.陳藹然, 吸附. In 科學Online, 2011.
41.Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., REPORTING PHYSISORPTION DATA FOR GAS SOLID SYSTEMS WITH SPECIAL REFERENCE TO THE DETERMINATION OF SURFACE-AREA AND POROSITY (RECOMMENDATIONS 1984). Pure Appl. Chem. 1985, 57 (4), 603-619.
42.Evans, R.; Marconi, U. M. B.; Tarazona, P., CAPILLARY CONDENSATION AND ADSORPTION IN CYLINDRICAL AND SLIT-LIKE PORES. Journal of the Chemical Society-Faraday Transactions Ii 1986, 82, 1763-1787.
43.Schramm, L. L., The language of colloid and interface science : a dictionary of terms. Washington, DC : American Chemical Society, 1993.: 1993.
44.Szymanska-Chargot, M.; Cybulska, J.; Zdunek, A., Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy. Sensors 2011, 11 (6), 5543-5560.
45.Ross, D. J. K.; Bustin, R. M., Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel 2007, 86 (17-18), 2696-2706.
46.Tang, S. K.; Baker, G. A.; Ravula, S.; Jones, J. E.; Zhao, H., PEG-functionalized ionic liquids for cellulose dissolution and saccharification. Green Chemistry 2012, 14 (10), 2922-2932.
47.Lin, Y.; Williams, T. V.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W., Defect Functionalization of Hexagonal Boron Nitride Nanosheets. Journal of Physical Chemistry C 2010, 114 (41), 17434-17439.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔