(3.238.173.209) 您好!臺灣時間:2021/05/09 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫士堯
研究生(外文):Shi-Yao Sun
論文名稱:應用於染料敏化太陽能電池之新型 π 共軛擴張推拉紫質合成
論文名稱(外文):Synthesis of Porphyrins with Novel Extended π-conjugated and Push-Pull Units for Dye-sensitized Solar Cells
指導教授:葉鎮宇
指導教授(外文):Chen-Yu Yeh
口試委員:張啟光彭旭明
口試委員(外文):Chi-Kwong ChangShie-Ming Peng
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:166
中文關鍵詞:紫質染料敏化太陽能電池
外文關鍵詞:porphyrinDye-sensitized Solar Cellsbecoming an important targetoptimal conditionscrucial
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
能源與人類的經濟發展有著很大的關聯。石油危機和環保意識抬頭,發展綠色能源,刻不容緩。而太陽能的應用具有很大的發展潛力,因此投入研究染料敏化太陽能電池成為重要的目標。
本篇論文主要說明合成出一系列新型的推拉電子基結構的紫質染料,應用於染料敏化太陽能電池染料之研究。我們設計出新的紫質染料主體,在紫質分子的meso 取代基團中引入ortho 取代2-hexyldodecyloxy(OHD)取代基,使用乙炔取代基做為橋接分子,連接推電子基以及紫質本體,並在acceptor 部份引入pyridine-2,6-dicarboxylic acid 作為anchoring group,期許具支鏈的長碳鏈的設計能更有效地可以增加溶解度、防止染料分子之間互相產生推疊、有效減少暗電流以及因為pyridine-2,6-dicarboxylic acid 的引進能有效增加分子與TiO2的鍵結能力。目前元件的初步測試,其中以苯酸基作為電荷受體的SY4染料的光電轉換效率為最高,可達到6.19 %。未來我們將找尋各染料應用在染料敏化太陽能電池上的最佳化條件,期望光電轉換效率能再登上高峰。

Energy is closely linked to economic development. Due to the rise of oil crisis and environmental awareness, it is crucial to use green energy. The solar energy has great potential for development and the research in Dye-sensitized Solar Cell (DSCs) is becoming an important target for investment.
The thesis mainly focus on the synthesis of a series of novel push-pull porphyrin dyes for application in DSCs. The porphyrin dyes consist of two phenyl groups which attached at 5th,15th -meso-position, bearing two 2-hexyl-dodecyloxy (OHD) groups as core units, the ethynylene group bridged between electron-donating group and core units, and the pyridine- 2,6-dicarboxylic acid as an electron-withdrawing/anchoring group. We expect the design of the porphyrins with branched alkyl group and high numbers of carbons could increase the solubility, prevent molecules from aggregation, and effectively decrease the quantity of yielding dark-current.In addition, the bonding force between dyes and TiO2 could strengthen owing to the pyridine-2,6-dicarboxylic acid. At present, we used the porphyrin dyes for testing in DSCs, SY4 used a benzenecarboxylic acid as an electron acceptor gives the best power conversion efficiency of 6.19 %.
In the future, we will pursue the optimal conditions of each dyes for use in Dye-sensitized Solar cell (DSCs), it is desirable to get as much efficiency as possible.

第一章 緒論
1-1 前言…………………………………………………………..1
1-2 太陽能電池簡介……………………………………………..2
1-3 染料敏化太陽能電池的起源…………………………….....11
1-4 染料敏化太陽能電池的結構……………………………….10
1-5 染料敏化太陽能電池的工作原理………………………….20
1-6 染料敏化太陽能電池的性能量測………………………….23
1-7 紫質簡介...……………………………….………………….27
1-8 紫質吸收光譜理論...………………….……………….……29
1-9 染料敏化太陽能電池相關文獻回顧…...….…………...…..30
1-10 研究動機與方向……...…….………….…………………...50
第二章 紫質染料合成
2-1 紫質染料主體合成……….…………………………………60
2-2 含炔基取代芳香環之共軛紫質染料合成……….…………66
第三章 結果與討論
3-1 具推拉電子基以及雙炔基架橋之紫質染料………....……..73
3-2 UV−vis and Emission Absorption……………………...…….74
iii
3-3 Electrochemical Properties………….……………..…………76
3-4 Photovoltaic Characterization………………………….…….83
3-5 SY1與SY2與SY4,SY3與SY5的比較……………………..89
第四章 結論………………………………………………...……...…..94
第五章 未來展望…………………………………………...……...…..95
第六章 實驗步驟
6-1 藥品與儀器…………………………………….…………….98
6-2 染料敏化太陽能電池的製備與封裝………………….…...102
6-3 實驗步驟…………………………………………….……...100
附錄…………………………………………………………...……….118

第一章
(1) Chapman, G. A. Science 2008, 322, 535.
(2) Bahcall, J. N.; Pinsonneault, M. H.; Basu, S. The Astrophysical Journal 2001,555, 990.
(3) Fröhlich, C.; Lean, J. The Astronomy and Astrophysics Review 2004, 12, 273.
(4) Kopp, G.; Lawrence, G.; Rottman, G. In The Solar Radiation and Climate
Experiment (SORCE); Rottman, G., Woods, T., George, V., Eds.; Springer New
York: 2005, p 129.
(5) Gueymard, C. A.; Myers, D.; Emery, K. Solar Energy 2002, 73, 443.
(6) Shockley, W.; Queisser, H. J. J Appl Phys 1961, 32, 510.
(7) Van Overstraeten, R. Renewable Energy 1994, 5, 103.
(8) Derby, J. J.; Atherton, L. J.; Gresho, P. M. J Cryst Growth 1989, 97, 792.
(9) Braga, A. F. B.; Moreira, S. P.; Zampieri, P. R.; Bacchin, J. M. G.; Mei, P. R. Sol
Energy Mater Sol Cells 2008, 92, 418.
(10) Guha, S.; Yang, J.; Banerjee, A. Progress in Photovoltaics: Research and
Applications 2000, 8, 141.
(11) Meyers, P. V.; Albright, S. P. Progress in Photovoltaics: Research and
Applications 2000, 8, 161.
(12) Radziemska, E. Prog Energy Combust Sci 2003, 29, 407.
(13) Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Science 1999, 285,
692.
(14) Barlev, D.; Vidu, R.; Stroeve, P. Sol Energy Mater Sol Cells 2011, 95, 2703.
(15) Sweatt, W.; Jared, B. H.; Nielson, G. N.; Okandan, M.; Filatov, A.; Sinclair, M.
B.; Cruz-Campa, J. L.; Lentine, A. L. In International Optical Design
Conference and Optical Fabrication and Testing; Optical Society of America:
Jackson Hole, Wyoming, 2010, p ITuC4.
(16) Green, M. A.; Ho-Baillie, A.; Snaith, H. J., Nat. Photonics 2014, 8 (7), 506-514.
(17) Science 2013, 342 (6165), 1438-1439.
(18) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon,
S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G.,
Sci. Rep. 2012, 2, 591.
(19) (a) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.;
Nazeeruddin, M. K.; Gratzel, M., Nature 2013, 499 (7458), 316-319; (b) Liu,
D.; Kelly, T. L., Nat. Photonics 2014, 8 (2), 133-138; (c) Malinkiewicz, O.;
Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.;
Bolink, H. J., Nat. Photonics 2014, 8 (2), 128-132; (d) Liu, M.; Johnston, M. B.;
Snaith, H. J., Nature 2013, 501 (7467), 395-398.
55
(20) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.;
Liu, Y.; Yang, Y., Science 2014, 345 (6196), 542-546.
(21) Bundgaard, E.; Krebs, F. C. Sol Energy Mater Sol Cells 2007, 91, 954.
(22) Brabec, C. J. Sol Energy Mater Sol Cells 2004, 83, 273.
(23) Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem Rev 2009, 109, 5868.
(24) Roncali, J. Macromol Rapid Commun 2007, 28, 1761.
(25) Kippelen, B.; Bredas, J.-L. Energy & Environmental Science 2009, 2, 251.
(26) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem Rev 2010,
110, 6595.
(27) Minnaert, B.; Veelaert, P. Energies 2014, 7, 1500.
(28) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Progress in
Photovoltaics: Research and Applications 2015, 23, 1.
(29) Gratzel, M. Nature 2001, 414, 338.
(30) Bequerel, E. C.R. Acad. Sci. 1839, 9, 145.
(31) West, W. Proc. Vogel Cent. Symp. Photogr. Sci. Eng. 1974, 18, 35.
(32) Moser, J. Monatsh Chem 1887, 8, 373.
(33) Namba, S.; Hishiki, Y. J Phys Chem 1965, 69, 774.
(34) Gerischer, H.; Tributsch, H. Ber. Bunsenges. Phys. Chem. 1968, 72, 437.
(35) Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261,
402.
(36) O''Regan, B.; Gratzel, M. Nature 1991, 353, 737.
(37) Badeker, K. Ann. Phys. (Berlin, Ger.0 1907, 22, 749.
(38) Coutts, T. J.; Mason, T. O.; Perkins, J. D.; Ginley, D. S. Proc. Electrochem.
Soc. 1999, 99-11, 274.
(39) Coutts, T. J.; Young, D. L.; Li, X. MRS Symp. Proc. 2000, 623, 199.
(40) Kim, H.; Gilmore, C. M.; Piqué, A.; Horwitz, J. S.; Mattoussi, H.; Murata, H.;
Kafafi, Z. H.; Chrisey, D. B. J Appl Phys 1999, 86, 6451.
(41) Yousaf, S. A.; Ali, S. J. Nat. Sci. Math. 2008, 48, 43.
(42) Wu, X.; Dhere, R. G.; Albin, D. S.; Gessert, T. A.; DeHart, C.; Keane, J. C.;
Duda, A.; Coutts, T. J.; Asher, S.; Levi, D. H.; Moutinho, H. R.; Yan, Y.;
Moriarty, T.; Johnston, S.; Emery, K.; Sheldon, P. Proc. NCPV Prog. Rev.
Meet., Lakewood, CO 2001, 47.
(43) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H.
Sol Energy Mater Sol Cells 2000, 64, 115.
(44) Reyes-Coronado, D.; Rodríguez-Gattorno, G.; Espinosa-Pesqueira, M. E.;
Cab, C.; Coss, R. d.; Oskam, G. Nanotechnology 2008, 19, 145605.
(45) Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F. J Appl Phys 1994,
75, 2042.
(46) Grätzel, M. Inorg Chem 2005, 44, 6841.
(47) Hagfeldt, A.; Graetzel, M. Chem Rev 1995, 95, 49.
(48) Kashif, M. K.; Nippe, M.; Duffy, N. W.; Forsyth, C. M.; Chang, C. J.; Long, J.
R.; Spiccia, L.; Bach, U. Angew Chem Int Ed 2013, 52, 5527.
(49) Mosconi, E.; Yum, J.-H.; Kessler, F.; Gómez García, C. J.; Zuccaccia, C.;
Cinti, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. J Am Chem Soc
2012, 134, 19438.
(50) Wu, K.-L.; Hu, Y.; Chao, C.-T.; Yang, Y.-W.; Hsiao, T.-Y.; Robertson, N.; Chi,
Y. J. Mater. Chem. A 2014, 2, 19556.
(51) Zhou, D.; Yu, Q.; Cai, N.; Bai, Y.; Wang, Y.; Wang, P. Energy &
Environmental Science 2011, 4, 2030.
(52) Fukui, A.; Komiya, R.; Yamanaka, R.; Islam, A.; Han, L. Sol Energy Mater Sol
Cells 2006, 90, 649.
(53) Park, N. G.; van de Lagemaat, J.; Frank, A. J. J Phys Chem B 2000, 104, 8989.
(54) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Arakawa, H. Sol Energy
Mater Sol Cells 2001, 70, 151.
(55) Boschloo, G.; Häggman, L.; Hagfeldt, A. J. Phys. Chem. B 2006, 110, 13144.
(56) Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G. Electrochem Commun 2008, 10,
1555.
(57) Wei, W.; Wang, H.; Hu, Y. H. Int. J. Energy Res. 2014, 38, 1099.
(58) Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. ACS Nano 2010, 4,
6203.
(59) Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S.
J. Mater. Chem. A 2014, 2, 4474.
(60) Robertson, N. Angew Chem Int Ed 2006, 45, 2338.
(61) Mai, C.-L.; Moehl, T.; Hsieh, C.-H.; Decoppet, J.-D.; Zakeeruddin, S. M.;
Grätzel, M.; Yeh, C.-Y. ACS Appl. Mater. Interfaces 2015.
(62) Fattori, A.; Cangiotti, M.; Fiorani, L.; Lucchi, S.; Ottaviani, M. F. Langmuir
2014, 30, 13570.
(63) El Chaar, L.; lamont, L. A.; El Zein, N. Renewable and Sustainable Energy
Reviews 2011, 15, 2165.
(64) Kippelen, B.; Bredas, J.-L. Energy & Environmental Science 2009, 2, 251.
(65) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem Rev 2010,
110, 6595.
(66) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Chem. Rev.
2010, 110 (11), 6595-6663.
(67) Murakami, T. N.; Grätzel, M., Inorg. Chim. Acta 2008, 361 (3), 572-580.
(68) Berg, H., Zeitschrift für allgemeine Mikrobiologie 1964, 4 (5), 398-398.
(69) Gust, D.; Moore, T. A.; Moore, A. L.; Makings, L. R.; Seely, G. R.; Ma, X.;
Trier, T. T.; Gao, F., J. Am. Chem. Soc. 1988, 110 (22), 7567-7569.
(70) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J., J.
Am. Chem. Soc. 1981, 103 (10), 2884-2886.
(71) Hückel, E. Z. physik. 1932, 76 , 628.
(72) Gouterman, M., J. Mol. Spectrosc. 1961, 6 (0), 138-163.
(73) (a) Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.;
Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.;
Bignozzi, C. A.; Grätzel, M., J. Am. Chem. Soc. 2001, 123 (8), 1613-1624; (b)
Hagfeldt, A.; Grätzel, M., Acc. Chem. Res. 2000, 33 (5), 269-277; (c)
Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.;
Liska, P.; Vlachopoulos, N.; Graetzel, M., J. Am. Chem. Soc. 1993, 115 (14),
6382-6390; (d) Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.;
Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel,
M., Inorg. Chem. 1999, 38 (26), 6298-6305.
(74) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.;
Gratzel, M. Nat Mater 2003, 2, 402.
(75) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.;
Gratzel, M., Nat. Mater. 2003, 2 (6), 402-407.
(76) Kuang, D.; Klein, C.; Ito, S.; Moser, J. E.; Humphry-Baker, R.; Evans, N.;
Duriaux, F.; Grätzel, C.; Zakeeruddin, S. M.; Grätzel, M. Adv Mater 2007, 19,
1133.
(77) Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.;
Wang, P.; Zakeeruddin, S. M.; Grätzel, M. J Am Chem Soc 2008, 130, 10720.
(78) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le,
C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.;
Grätzel, M. ACS Nano 2009, 3, 3103.
(79) Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H., Chem.
Commun. 2001, (6), 569-570.
(80) Tsao, H. N.; Burschka, J.; Yi, C.; Kessler, F.; Nazeeruddin, M. K.; Gratzel, M.,
Energ. Environ. Sci. 2011, 4 (12), 4921-4924.
(81) Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C., Chem. Commun. 2005, (32),
4098-4100.
(82) Ito, S.; Zakeeruddin, S. M.; Humphry‐ Baker, R.; Liska, P.; Charvet, R.; Comte,
P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H., Adv. Mater. 2006, 18
(9), 1202-1205.
(83) Sayama, K.; Tsukagoshi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.;
Suga, S.; Arakawa, H., Sol. Energy Mater. Sol. Cells 2003, 80 (1), 47-71.
(84) Chen, Y.-S.; Li, C.; Zeng, Z.-H.; Wang, W.-B.; Wang, X.-S.; Zhang, B.-W., J.
Mater. Chem. 2005, 15 (16), 1654-1661.
(85) Teng, C.; Yang, X.; Yuan, C.; Li, C.; Chen, R.; Tian, H.; Li, S.; Hagfeldt, A.;
Sun, L., Org. Lett. 2009, 11 (23), 5542-5545.
(86) (a) Shibano, Y.; Umeyama, T.; Matano, Y.; Imahori, H., Org. Lett. 2007, 9 (10),
1971-1974; (b) Chen, Z.; Debije, M. G.; Debaerdemaeker, T.; Osswald, P.;
Würthner, F., ChemPhysChem 2004, 5 (1), 137-140; (c) Schmidt-Mende, L.;
Bach, U.; Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.;
Grätzel, M., Adv. Mater. 2005, 17 (7), 813-815.
(87) Ko, S.; Choi, H.; Kang, M.-S.; Hwang, H.; Ji, H.; Kim, J.; Ko, J.; Kang, Y., J.
Mater. Chem. 2010, 20 (12), 2391-2399.
(88) Guillén, E.; Casanueva, F.; Anta, J. A.; Vega-Poot, A.; Oskam, G.; Alcántara,
R.; Fernández-Lorenzo, C.; Martín-Calleja, J., J. Photoch. Photobio. A 2008,
200 (2–3), 364-370.
(89) Jin, J.; Shan, Y.; Yang, F.; Lai, H.; Tan, H.; Liu, X.; Tang, J.; Fang, Q., Synth.
Met. 2012, 162 (24), 2222-2227.
(90) (a) Choi, H.; Raabe, I.; Kim, D.; Teocoli, F.; Kim, C.; Song, K.; Yum, J.-H.; Ko,
J.; Nazeeruddin, M. K.; Grätzel, M., Chem-Eur. J. 2010, 16 (4), 1193-1201; (b)
Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., J. Am.
Chem. Soc. 2006, 128 (44), 14256-14257.
(91) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.;
Pechy, P.; Gratzel, M., Chem. Commun. 2008, (41), 5194-5196.
(92) Mao, J.; He, N.; Ning, Z.; Zhang, Q.; Guo, F.; Chen, L.; Wu, W.; Hua, J.; Tian,
H., Angew. Chem. Int. Ed. 2012, 51 (39), 9873-9876.
(93) Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P., J. Am. Chem. Soc. 2015,
137 (11), 3799-3802.
(94) Kay, A.; Graetzel, M., J. Phys. Chem. 1993, 97 (23), 6272-6277.
(95) Clifford, J. N.; Yahioglu, G.; Milgrom, L. R.; Durrant, J. R., Chem. Commun.
2002, (12), 1260-1261.
(96) Nazeeruddin, M. K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.;
Burrell, A. K.; Grätzel, M., Langmuir 2004, 20 (15), 6514-6517.
(97) Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.;
Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M.,
J. Phys. Chem. B 2005, 109 (32), 15397-15409.
(98) Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon,
K. C.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M.; Officer,
D. L., J. Phys. Chem. C 2007, 111 (32), 11760-11762.
(99) Ishida, M.; Park, S. W.; Hwang, D.; Koo, Y. B.; Sessler, J. L.; Kim, D. Y.; Kim,
D., J. Phys. Chem. C 2011, 115 (39), 19343-19354.
(100) Eu, S.; Hayashi, S.; Umeyama, T.; Oguro, A.; Kawasaki, M.; Kadota, N.;
Matano, Y.; Imahori, H., J. Phys. Chem. C 2007, 111 (8), 3528-3537.
(101) (a) Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.;
Araki, Y.; Imahori, H., J. Phys. Chem. C 2008, 112 (39), 15576-15585; (b)
Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H., Chem.
Commun. 2007, (20), 2069-2071.
(102) Mai, C.-L.; Huang, W.-K.; Lu, H.-P.; Lee, C.-W.; Chiu, C.-L.; Liang, Y.-R.; Diau,
E. W.-G.; Yeh, C.-Y., Chem. Commun. 2010, 46 (5), 809-811.
(103) Jiao, C.; Zu, N.; Huang, K.-W.; Wang, P.; Wu, J., Org. Lett. 2011, 13 (14), 3652-
3655.
(104) Lin, V.; DiMagno, S. G.; Therien, M. J., Science 1994, 264 (5162), 1105-1111.
(105) Lu, H.-P.;Tsai, C.-Y.;Yen, W.-N.;Hsieh, C.-P.;Lee, C.-W.;Yeh, C.-Y.;
Diau, E.W.-G. J. Phys. Chem. C 2009, 113, 20990–20997
(106) Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.; Liu,
Y.-C.; Lin, Y.-S.; Diau, E. W.-G.; Yeh, C.-Y., Chem-Eur. J. 2009, 15 (6), 1403-
1412.
(107) Bessho, T.;Zakeeruddin, S. M.;Yeh, C.-Y.;Diau, E. W.-G.;Grätzel, M.,
Angew. Chem. Int. Ed. 2010, 49, 6646 –6649
(108) Yella, A.;Lee, H.-W.;Tsao, H.N.;Yi, C.;Chandiran, A. K.;Nazeeruddin,
M. K.;Diau, E. W.-G.;Yeh, C.-Y.;Zakeeruddin, S.M.;M. Grätzel, Science
2011, 334, 629-634.
(109) Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo, H.-H.;
Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G., Chem. Commun. 2011, 47 (31),
8910-8912.
(110) Wang, C.-L.; Lan, C.-M.; Hong, S.-H.; Wang, Y.-F.; Pan, T.-Y.; Chang, C.-W.;
Kuo, H.-H.; Kuo, M.-Y.; Diau, E. W.-G.; Lin, C.-Y., Energ. Environ. Sci. 2012,
5 (5), 6933-6940.
(111) Mai, C.-L.;Moehl, T.;Hsieh, C.-H.;coppet, J.D., D.;Zakeeruddin, S. M.;
Grätzel, M.;Yeh, C.-Y., ACS Appl. Mater. Interfaces, 2015, 7, 14975−14982
(112) Chou, H.-H.;Reddy, S. K.;Wu, H.-P.;Guo, B.-C. Lee, H.-W.;Diau, Eric
W.-G.;Hsu, C.-P.;Yeh, C.-Y. ACS Appl. Mater. Interfaces, 2016, 8 (5), 3418-
3427.
(113) Pryor, K. E.;Shipps Jr, G. W.;Skyler, D. A.;Rebek Jr, J. Tetrahedron 1998,
54, 4107
(114) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J., J.
Am. Chem. Soc. 1981, 103 (10), 2884-2886.
第二章
(1) (a) Sedghi, G.; García-Suárez, V. M.; Esdaile, L. J.; Anderson, H. L.;
Lambert, C. J.; Martín, S.; Bethell, D.; Higgins, S. J.; Elliott, M.; Bennett, N., Nature
nanotechnology 2011, 6 (8), 517-523; (b) Li, Z.; Park, T.-H.; Rawson, J.; Therien, M.
J.; Borguet, E., Nano Lett. 2012, 12 (6), 2722-2727; (c) Elmalem, E.; Biedermann, F.;
Johnson, K.; Friend, R. H.; Huck, W. T., J. Am. Chem. Soc. 2012, 134 (42), 17769-
17777.
(2) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J., J.
Am. Chem. Soc. 1981, 103 (10), 2884-2886.
(3) Mohr, B.;Enkelmann, V.;Wegner, G., J. org. chem. 1994, 59, 635.
(4) Splan, K.E.;Hupp, J.T. Langmuir 2004, 20, 10560–10566.
(5) Li, F.;Yang, K.;Tyhonas, J.S;MacCrum, K.A.;Lindesey, J.S. Tetrahedron
1997, 53, 12339.
(6) Susumu, K.;Therien, M.J. J. Am. Chem. Soc. 2002, 124(29), 8550-8552.
(7) Susumu, K.;Frail, P.R;Angiolillo, P.J.;Therien, M.J. J. Am. Chem. Soc.
2006, 128, 8380-8381.
(8) (a) Yella, A.;Lee, H.-W.;Tsao, H.N.;Yi, C.;Chandiran, A. K.;Nazeeruddin,
M. K.;Diau, E. W.-G.;Yeh, C.-Y.;Zakeeruddin, S.M.;M. Grätzel, Science 2011,
334, 629-634. (b) Chou, H.-H.;Reddy, S. K.;Wu, H.-P.;Guo, B.-C. Lee, H.-W.;
Diau, Eric W.-G.;Hsu, C.-P.;Yeh, C.-Y. ACS Appl. Mater. Interfaces, 2016, 8 (5),
3418–3427.
(9) Pryor, K. E.;Shipps Jr, G. W.;Skyler, D. A.;Rebek Jr, J. Tetrahedron 1998,
54, 4107
(10) Kim, S. K.;Lee, J. H.;Yoon, Bull. Korean Chem. Soc. 2003, 24, 1032
第三章~第五章
(1) Yella, A.;Lee, H.-W.;Tsao, H.N.;Yi, C.;Chandiran, A. K.;Nazeeruddin,
M. K.;Diau, E. W.-G.;Yeh, C.-Y.;Zakeeruddin, S.M.;M. Grätzel, Science
2011, 334, 629-634.
(2) Chou, H.-H.;Reddy, S. K.;Wu, H.-P.;Guo, B.-C. Lee, H.-W.;Diau, Eric
W.-G.;Hsu, C.-P.;Yeh, C.-Y. ACS Appl. Mater. Interfaces, 2016, 8 (5), 3418-
3427.
(3) Wang, C.-L.; Lan, C.-M.; Hong, S.-H.; Wang, Y.-F.; Pan, T.-Y.; Chang, C.-W.;
Kuo, H.-H.; Kuo, M.-Y.; Diau, E. W.-G.; Lin, C.-Y., Energ. Environ. Sci. 2012,
5 (5), 6933-6940.
(4) Syu, Y.-K.; Tingare, Y.; Yeh, C.-Y.; Yang, J.-S.; Wu, J.-J., RSC Adv. 2016, 6 (64),
59273-59279.
第六章
(1) (a) Sedghi, G.; García-Suárez, V. M.; Esdaile, L. J.; Anderson, H. L.;
Lambert, C. J.; Martín, S.; Bethell, D.; Higgins, S. J.; Elliott, M.; Bennett, N., Nature
nanotechnology 2011, 6 (8), 517-523; (b) Li, Z.; Park, T.-H.; Rawson, J.; Therien, M.
J.; Borguet, E., Nano Lett. 2012, 12 (6), 2722-2727; (c) Elmalem, E.; Biedermann, F.;
Johnson, K.; Friend, R. H.; Huck, W. T., J. Am. Chem. Soc. 2012, 134 (42), 17769-
17777.
(2) Mohr, B.;Enkelmann, V.;Wegner, G., J. org. chem. 1994, 59, 635.
(3) Splan, K.E.;Hupp, J.T., Langmuir 2004, 20, 10560–10566.
(4) Li, F.;Yang, K.;Tyhonas, J.S;MacCrum, K.A.;Lindesey, J.S. Tetrahedron
1997, 53, 12339.
(5) Susumu, K.;Therien, M.J. J. Am. Chem. Soc. 2002, 124(29), 8550-8552.
(6) Susumu, K.;Frail, P.R;Angiolillo, P.J.;Therien, M.J. J. Am. Chem. Soc.
2006, 128, 8380-8381.
(7) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J., J.
Am. Chem. Soc. 1981, 103 (10), 2884-2886.
(8) (a) Yella, A.;Lee, H.-W.;Tsao, H.N.;Yi, C.;Chandiran, A. K.;Nazeeruddin,
M. K.;Diau, E. W.-G.;Yeh, C.-Y.;Zakeeruddin, S.M.;M. Grätzel, Science 2011,
334, 629-634. (b) Chou, H.-H.;Reddy, S. K.;Wu, H.-P.;Guo, B.-C. Lee, H.-W.;
Diau, Eric W.-G.;Hsu, C.-P.;Yeh, C.-Y. ACS Appl. Mater. Interfaces, 2016, 8 (5),
3418–3427.
(9) Pryor, K. E.;Shipps Jr, G. W.;Skyler, D. A.;Rebek Jr, J. Tetrahedron 1998,
54, 4107
(10) Franc¸ O.T.;Gilles, B.;Veronique, B.;Florence, M.;Francis, M.;Guy,
Q., Tetrahedron 2000, 56, 1349–1360
(11) Kim, S. K.;Lee, J. H.;Yoon, Bull. Korean Chem. Soc. 2003, 24, 1032


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔